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Abstract

This LDRD project was developed around the ambitious goal of applying PDE-constrained opti-
mization approaches to design Z-machine components whose performance is governed by elec-
tromagnetic and plasma models. This report documents the results of this LDRD project. Our
differentiating approach was to use topology optimization methods developed for structural design
and extend them for application to electromagnetic systems pertinent to the Z-machine. To achieve
this objective a suite of optimization algorithms were implemented in the ROL library part of the
Trilinos framework. These methods were applied to standalone demonstration problems and the
Drekar multi-physics research application. Out of this exploration a new augmented Lagrangian
approach to structural design problems was developed. We demonstrate that this approach has
favorable mesh-independent performance. Both the final design and the algorithmic performance
were independent of the size of the mesh. In addition, topology optimization formulations for the
design of conducting networks were developed and demonstrated. Of note, this formulation was
used to develop a design for the inner magnetically insulated transmission line on the Z-machine.
The resulting electromagnetic device is compared with theoretically postulated designs.
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Chapter 1

Introduction

This LDRD pursued the development of topology optimization methods motivated by the chal-
lenge of reducing current loss incurred in the convolute structure of the Z-machine. The goal
of topology optimization is to optimally place material in a volume, subject to engineering con-
straints, that delivers optimal performance measured by a specific engineering quantity of interest.
The optimization process defines the “topology” of the device being designed. This report details
the approaches taken to address this challenge and their results.

This project was composed of three interacting research directions needed to advance topology
optimization methodology for electromagnetic problems. The first is development of an optimiza-
tion formulation that results in a physically realizable topology satisfying the engineering ideal and
constraints. To ensure efficient and scalable topology optimization methods, the second direction is
to develop nonlinear programming algorithms to solve large-scale PDE-constrained optimization
problems relevant to topology optimization. Finally, PDE constrained optimization has substantial
software overhead. This project worked to develop and demonstrate software approaches that can
be applied to these complex problems.

1.1 Motivating Problem: Design of the Convolute on the Z-
machine

The Z-machine is an electromagnetic device that uses large currents to create radiation environ-
ments. Figure 1.1 shows a profile of the Z-machine with the inset on the right focusing on the
magnetically insulated transmission lines (MITLs) and convolute. A high-level description of how
the Z-machine works can be found in [24]. Briefly, the Z-machine is arranged as a ring of capac-
itors whose power is simultaneously released. This current travels down the MITLs, towards the
convolute where the current is rearranged before it reaches the target known as the load. Along
the way in the convolute, owing to the high currents, strong electric fields, complex surface in-
teractions, and material properties a percentage of the input power is lost [15, 16]. Design of the
topology associated with the convolute, under ideal (e.g. lossless) conditions, is the ambitious goal
of this LDRD.

The convolute is a stainless steel device that combines power transferred over several MITLs to
an inner MITL eventually delivering the current to the Z-machine target [28]. The configuration of
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Figure 1.1. On the left is a profile of the Z-machine showing
each component. The image on the right, is a close up of the re-
gion on the far right of the profile. This shows the Magnetically
Insulated Transmission Lines (MITLs) and at its center is the con-
volute. Further details on how the Z-machine works can be found
in [24], the image and further discussion can also be found in [26].

the incoming MITLs is such that the convolute device is fundamentally 3D. Current Sandia designs
are based on a “double post hole” topology. Model development to gain insight into current loss is
ongoing, but plasma models in the presence of large electromagnetic fields will play a significant
role in the loss mechanism. To focus on the required optimization algorithms and formulations this
project is focused on design optimization using electromagnetic models.

The project targeted simplified models of the convolute and MITLs. In particular, the MITLs
can be viewed as a coaxial cable (concentric cylindrical conductors with a gap between carrying a
signal). One extension of the straight coaxial cable model is a transition from a wide radius input
port to a narrow radius output port. On the Z-machine this is how the inner MITL that transfer
current from the convoluted to the load is structured. There has been some theoretical working
designing an idealized inner MITL [19, 38]. These results suggest a dome shape design is more
efficient than a cone shape.

1.2 Topology Optimization Methods and Formulations

Topology optimization [35, 1] is a PDE-constrained optimization computational technique for de-
signing an engineering system optimized for a quantity of interest (e.g energy) subject to a con-
straint (e.g. a prescribed mass). This technique was developed originally to design optimal struc-
tures for carrying a specified load. To that end, most of the work on topology optimization has been
targeting the linear elasticity equations as a PDE constraint (though more realistic nonlinear struc-
tural models have since been pursued). There are a number of different approaches that are used
to define the distribution of material over a domain. The distribution of material in this domain
is constrained only by explicitly enforced engineering constraints. This can lead to very general
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topologies. This is in contrast to shape optimization approaches where a domain is parameterized
and optimization is performed over those parameters. The extent of the topology achieved is thus
limited by the parameterization. The ability of topology optimization to find designs beyond what
is dictated by engineering intuition is one of its strengths.

There are a number of approaches used to define a topology. All of them use a continuous field
defined over the domain. This field indicates if there is a material or a void at a particular location.
The PDE model (e.g. linear elasticity) is robust to the presence of both material and void. A special
treatment of the void may be required. A good review of the options can be found in [35].

Our approach is to use an artificial density field that ranges between 0 (void space) and 1 (ma-
terial space). The interface between void and material represents the shape of the component being
designed. This approach has been successful for problems in structural design [35] and the design
of antennas [22] (among others). The optimization problem is initialized with a uniform artificial
density. As the optimization algorithm proceeds the objective function and constraints drive the
artificial density field to evolve until the shape materializes. This approach has no topological as-
sumptions imposed by the formulation, thus obtaining the complex topologies is possible. To solve
the resulting problems nonlinear programming methods are applied. We utilized and extended the
Rapid Optimization Library (ROL ) as the algorithmic tool for solving the optimization problems.

1.3 Summary of Contributions

There were several concrete artifacts produced as a result of this project. This includes two papers
on block preconditioning, see references [10], and [11]. In addition to this report, one additional
report (see [12]) is progressing towards publication. Five presentations were given at conferences:

1. G. von Winckel, E.C. Cyr, T. Gardiner, D.P. Kouri, D. Ridzal, and J.N. Shadid, Reduced
and Full Space Methods in Topology Optimization: Applications in Linear Elasticity and
Electrical Conduction, Copper Mountain Conference on Iterative Methods, 2016.

2. E.C. Cyr, G. von Winckel, T. Gardiner, D.P. Kouri, S. Miller and J.N. Shadid, Topology
optimization for design of coaxial cables, SIAM Conference on Computational Science and
Engineering, 2017.

3. G. von Winckel, E.C. Cyr, and D.P. Kouri, Algorithms for the topology optimization of elec-
trical conductors, SIAM Conference on Computational Science and Engineering, 2017.

4. E.C. Cyr, G. von Winckel, T. Gardiner, D. Kouri, S. Miller, D. Ridzal and J.N. Shadid,
Topology Optimization: Challenges, Algorithms and Applications, UNM, Mathematics Col-
loquium and the Applied Mathematics Seminar, 2017.

5. E.C. Cyr, G. von Winckel, T. Gardiner, D. Kouri, S. Miller and J.N. Shadid, Methods for
Topological Design of Conducting Networks, Coupled Problems, 2017.
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Also, a mini-symposium titled Topology Optimization: Formulations, Methods and Applications
was organized by the PI and Boyan Lazarov (Technical University of Denmark) at the 2017 SIAM
Conference on Computational Science and Engineering. Two student visitors were mentored and
supported by this project for a summer. They each produced student research papers published in
the CSRI proceedings

• Mona Hajghassem, University of Maryland Baltimore County, summer 2015, reference [27],

• Nick Fisher, Colorado School of Mines, summer 2016, reference [30].

In addition several follow on proposals were funded. The CIS LDRD project

• Distributed-in-time techniques for optimization at extreme scales (DITTO-X), PI: Denis Ridzal,
2018-2020

is a collaboration between Ridzal and the PI of the present project that evolved directly out of the
student work [27]. The PI of the present project is a principal on the grand challenge LDRD

• Towards Predictive Plasma Science and Engineering through Revolutionary Multi-Scale Al-
gorithms and Models, PI: George Laity, 2018-2020.

The inclusion of the current PI on the GCLDRD, is partially a result of the work towards un-
derstanding the Z-machine power flow required for this project. The efforts for electromagnetic
simulation and optimization developed in this project are planned to be leveraged in the DARPA-
EXTREME (Enabling Extreme New Designs for Optics and Imagers), PI Ihab El-kady. A number
of ASC projects are also using ROL to do their optimization, including Sierra Dynamics, Xyce
and Plato.

Much of the labor in this project went to development of sophisticated software tools. The work
towards these tools was in the development of libraries and approaches that will be broadly applica-
ble beyond the scope of the present work. A summary of the library development includes develop-
ment in the Trilinos packages ROL and Panzer . This includes directed usage of the Sacado AD
library to compute derivatives required for optimization. Finally, the application Drekar was mod-
ified to include optimization. This includes novel interfaces that could be generalized for usage in
other applications. For a more detailed description of these contributions see Chapter 2.

Algorithmically this project considered Hessian based optimization algorithms applied to topol-
ogy optimization. This includes augmented Lagrangian formulations, interior point methods and
the Kelley-Sachs trust region approach. This effort has exposed a fundamental challenge of de-
veloping scalable (e.g. mesh independent) algorithms for topology optimization. Namely the
non-convexity of the objective imposed by the 0/1 nature of the density approach. Despite these
challenges, progress was made using these algorithms to designing conducting networks using
both electrostatic and electromagnetic PDE constraints.
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Chapter 2

Software

The development of the optimization formulation is a substantial problem for topology optimiza-
tion and PDE constrained optimization. A number of important considerations go into defining
the objective, PDE formulation and constraints. These considerations include, but are not limited
to, physical design goals, design constraints, PDE solution regularity, structure of the objective,
and achievable performance of the optimization algorithms. As such, in an exploratory phase of
problem formulation (as opposed to a more production capability) the flexibility of the software is
essential to rapidly prototyping many problem formulations. This section discusses several of the
core software technologies developed as part of this LDRD effort.

2.1 Automatic Differentiation (AD)

The tool used for automatic differentiation is a C++ library called Sacado distributed as part
of the Trilinos framework. The approach taken uses operator overloading and template meta-
programming to automatically compute derivatives efficiently. The application of this technology,
combined with other software tools, to implement a flexible finite element application is discussed
in [32, 33]. Sacado can be efficiently applied when the derivatives are dense, and has been ex-
tended to work efficiently on various multicore platforms (Intel Phi, NVIDIA GPUs, threaded
CPUs) [39]. This section will present an example Sacado program that computes the first and
second derivatives of a function, these will be used in computing gradients and Hessians required
in PDE-constrained optimization.

The following code listing is based on an example from the Trilinos package Panzer . The
original example can be found in the Trilinos distribution1, and is built frequently with the Trili-
nos continuous integration process.

1 t y p e d e f Sacado : : Fad : : DFad<double> FadType ;
2 t y p e d e f Sacado : : Fad : : DFad<Sacado : : Fad : : SFad<double ,1> > SecondFadType ;
3
4 t empla te <typename S c a l a r>
5 S c a l a r func ( c o n s t S c a l a r & x , c o n s t S c a l a r & y )
6 {
7 re turn s t d : : s i n ( x∗y ) + 0 . 2 5∗ s t d : : cos ( y ) ;
8 }

1See git SHA1 d3b096f4f1a984291442564a93f03592dad859b1 in the Trilinos master branch. The example file
given a checkout of Trilinos is: Trilinos/packages/panzer/disc-fe/example/SacadoExample/example.cpp.
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9
10 i n l i n e SecondFadType s e e d s e c o n d d e r i v ( i n t num vars , i n t index , double xi , double v i )
11 {
12 SecondFadType x = SecondFadType ( num vars , index , x i ) ;
13 x . v a l ( ) . f a s t A c c e s s D x ( 0 ) = v i ;
14
15 re turn x ;
16 }
17
18 i n t main ( i n t argc , char ∗ a rgv [ ] )
19 {
20 double x v a l = 0 . 2 5 , y v a l = 0 . 5 ;
21 double dx = 2 . 0 , dy = 3 . 0 ;
22
23 { / / v a l u e
24 double x = x v a l ;
25 double y = y v a l ;
26 double f = func ( x , y ) ;
27
28 s t d : : c o u t << ” Value : ” << f << s t d : : e n d l ;
29 }
30
31 { / / f i r s t d e r i v a t i v e
32 FadType x = FadType ( 2 , 0 , x v a l ) ;
33 FadType y = FadType ( 2 , 1 , y v a l ) ;
34 FadType f = func ( x , y ) ;
35
36 s t d : : c o u t << ” F i r s t : ” << f << s t d : : e n d l ;
37 }
38
39 { / / s econd d e r i v a t i v e
40 SecondFadType x = s e e d s e c o n d d e r i v ( 2 , 0 , x v a l , dx ) ;
41 SecondFadType y = s e e d s e c o n d d e r i v ( 2 , 1 , y v a l , dy ) ;
42 SecondFadType f = func ( x , y ) ;
43
44 s t d : : c o u t << ” Second : ” << f << s t d : : e n d l ;
45 }
46
47 re turn 0 ;
48 }

This listing computes the value (code block at line 23), derivative (code block at line 31), and
action of the Hessian (code block at line 39) for the function defined on line 5. The function

f (x,y) = sin(xy)+
1
4

cos(y) (2.1)

has two dependent variables x, y and is a nonlinear function of each variable.

The first derivative Sacado type is defined on lines 1. The “Fad” (Forward AD) class is tem-
plated on the value type, in this case double. When the FadType is used to evaluate the templated
function, the expression template mechanism automatically computes the derivatives at the same
time as computing the value. The key step is to initialize or seed the variables correctly. This is
done in the code block starting at line 31 where the variable x is defined by calling the FadType
constructor. This constructor takes three arguments FadType(num vars,var index,var value)
where the arguments are

• num vars: the number of variables to differentiate with respect to,

• var index: the index of this variable in the array of variables to differentiate with respect to,
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• var value: the value of this variable.

For example when computing the gradient with respect to the x and y variables (code block at 31)
there are 2 variables. Thus the first argument to the FadType constructor is 2. The x vari-
able is defined as the first index and has value x val, thus the constructor call instantiating x
is FadType(2,0,x val). Similarly for the y variable, this time its the second index to differentiate
with respect to and has value y val yielding the constructor call FadType(2,1,y val).

The second derivative type is defined on line 2. Note that this templated type nests, two first
derivative types. In this case the gradient is computed in the outer “Fad” object and the second
derivative is computed by the inner type. In this case the template argument of 1 indicates that
this derivative will only be computed with respect to one variable. In fact, the second derivative
computed by this type will be a directional derivative. Define~x = [x,y] and a direction~v = [vx,vy],
the direction second derivative is defined as:

H(~x)~v =
∂

∂τ

(
∇ f (~x+ τ~v)

)∣∣∣
τ=0

. (2.2)

Thus in this case, the first derivative is similar to what is computed for the gradient, but the second
derivative is actually taken with respect to the τ variable. Again, the key is seeding the variables
passed into the templated function. The seeding of the second derivative variables is done by the
function defined starting on line 10. The first line of this function seeds the first derivative. This
is identical to the line used for initialization of the first derivative AD type. The second line in the
function seeds the second derivative. This line explicitly sets the derivative of ~x with respect to τ

to be~v. This is used to build up the chain rule computations used by the forward mode automatic
differentiation algorithm.

The description of using Sacado AD to compute derivatives of a scalar function is easily ex-
tended to a vector with many parameters. This is used to compute local element stiffness matrices
and Hessian contributions for use in a finite element method. A key point is that these derivatives
are typically dense (or can be computed densely). With local element residuals, stiffness and sensi-
tivity values computed a scatter routine is required to distribute these contributions to global vector
and sparse matrix data structures. A similar gather routine is used to transfer data from global
data to local data. In this step appropriate seeding of the Sacado objects is done to ensure proper
propagation of the derivatives. See for instance the discussion in [32, 33]

2.2 Objective Calculator

2.2.1 First and Second Derivatives

The form of the objective function is often the subject of formulation exploration. In this case, we
assume that the PDE code can compute a set of G “responses” gi(u,z)i=1G . Each of which maps
the state and control to a real number. In general, the objective function can then be written as

F(u,z) = f (g1(u,z),g2(u,z), . . .gN(u,z)). (2.3)
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Using the automatic differentiation procedure described above, we assume each of the response
quantities has first and second derivatives with respect to u and z. To use this objective in second
order optimization requires the first and second derivative operators:

[
∂F
∂u
∂F
∂ z

]
,

[
∂ 2F
∂u2

∂ 2F
∂u∂ z

∂ 2F
∂ z∂u

∂ 2F
∂ z2

]
. (2.4)

Often, only the action of the second derivative is required. To compute these derivatives, we have
developed a run time calculator capability in Drekar using embedded automatic differentiation.
The input to this capability is managed by the Teuchos::ParameterList.

The user of this capability defines the objective function f : RN → R, where each argument
will receive a response value. Using the chain rule we define the first derivatives of the objective
function F as:

∂F
∂u

=
N

∑
i=1

∂ f
∂gi

∂gi

∂u
,

∂F
∂ z

=
N

∑
i=1

∂ f
∂gi

∂gi

∂ z
. (2.5)

To implement first derivatives, Sacado based derivatives are used to compute the first derivative
terms ∂ f

∂gi
for i= 1 . . .N. Notice that since a dense derivative array of length N is computed, Sacado

can be used with reasonable efficiency. To compute the full derivative, a linear combination of the
application computed derivatives ∂gi

∂u is calculated.

A similar approach can be taken for the second derivatives. Though because in general for
an objective, the second derivative is a matrix, the ROL library requires users to compute the
action of the Hessian on a vector. While not difficult, this has to be carefully accounted for in
the computation of the derivatives. Fortunately, its easy to use the Sacado library to compute the
required direction derivatives. Before proceeding with the full expression of the second derivative
consider the case where the objective is composed of a single response g(u,z), e.g. F(u,z) =
f (g(u,z)). In the terse notation below, the use of brackets indicates the directional derivative
applied at the point (u,z). Now using calculus of variations the directional derivative for one
mixed derivative is computed

∂
2
uzF [vz] = ∂τ

(
∂uF(u,z+ τvz)

∣∣
τ=0

= ∂τ

(
∂g f (g(u,z+ τvz))∂zg(u,z+ τvz)

∣∣
τ=0

= ∂
2
g f ∂uq[vz]∂uq+∂g f ∂

2
uzg[vz].

(2.6)

When discretized, the derivatives ∂uq, ∂ 2
uzg[vz] and ∂ 2

uzF [vz] are all vectors of dimension u. This
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result is generalized for objectives in the form of Eq. 2.3:

∂ 2F
∂u2 [vu] =

N

∑
i=1

(
N

∑
j=1

∂ 2 f
∂gi∂g j

∂g j

∂u
[vu]

)
∂gi

∂u
+

∂ f
∂gi

∂ 2gi

∂u2 [vu],

∂ 2F
∂u∂ z

[vz] =
N

∑
i=1

(
N

∑
j=1

∂ 2 f
∂gi∂g j

∂g j

∂ z
[vz]

)
∂gi

∂u
+

∂ f
∂gi

∂ 2gi

∂u∂ z
[vz],

∂ 2F
∂ z∂u

[vu] =
N

∑
i=1

(
N

∑
j=1

∂ 2 f
∂gi∂g j

∂g j

∂u
[vu]

)
∂gi

∂ z
+

∂ f
∂gi

∂ 2gi

∂ z∂u
[vu],

∂ 2F
∂ z2 [vz] =

N

∑
i=1

(
N

∑
j=1

∂ 2 f
∂gi∂g j

∂g j

∂ z
[vz]

)
∂gi

∂ z
+

∂ f
∂gi

∂ 2gi

∂ z2 [vz].

(2.7)

In a similar way as the first derivative calculations, the derivatives of the objective function and the
responses can be computed efficiently with Sacado.

2.2.2 Expression Tree Calculator

To build up an objective function at run time a factory pattern [13] is used to build the data struc-
tures from aTeuchos::ParameterList input. The approach to the calculator is motivated by the
generic form of the objective function defined in Eq. (2.3). There are several responses labeled
gi that are automatically included in the calculator. These responses are leaves in an expression
tree. The tree is built up from foundational terms to build a complex expression. For instance the
expression

F(g0,g1,g2) =
1
2
(g0−g1)

2 +
1
3

max(g2,0)
3 (2.8)

has two Sum terms (e.g. g0−g1), a Power term (e.g. (·)2), and a Moreau-Yosida-type penalty term
(e.g. 1

3 max(g2,0)
3). Each term takes as input other terms in the tree. The XML input to build this

objective function is:

<!−− Computes O b j e c t i v e = D i f f S q u a r e d + MY−Term −−>
<P a r a m e t e r L i s t name=” O b j e c t i v e ” />

<P a r a m e t e r name=” Type ” t y p e =” s t r i n g ” v a l u e =”Sum” />
<P a r a m e t e r name=” Terms ” t y p e =” s t r i n g ” v a l u e =” D i f f S q u a r e d ,MY−Term” />
<P a r a m e t e r name=” S c a l i n g ” t y p e =” s t r i n g ” v a l u e =” 1 . 0 , 1 . 0 ” />

< / P a r a m e t e r L i s t>

<!−− Computes D i f f S q u a r e d = D i f f e r e n c e ˆ2 −−>
<P a r a m e t e r L i s t name=” D i f f S q u a r e d ” />

<P a r a m e t e r name=” Type ” t y p e =” s t r i n g ” v a l u e =” Power ” />
<P a r a m e t e r name=”Term” t y p e =” s t r i n g ” v a l u e =” D i f f e r e n c e ” />
<P a r a m e t e r name=” Power ” t y p e =” do ub l e ” v a l u e =” 2 . 0 ” />
<P a r a m e t e r name=” S c a l i n g ” t y p e =” do ub l e ” v a l u e =” 0 . 5 ” />

< / P a r a m e t e r L i s t>

<!−− Computes MY−Term = \ f r a c {1}{3}\max{ ( g 2 , 0 ) } ˆ 3 −−>
<P a r a m e t e r L i s t name=”MY−Term”>
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<P a r a m e t e r name=” Type ” t y p e =” s t r i n g ” v a l u e =” Moreau−Yosida ” />
<P a r a m e t e r name=”Term” t y p e =” s t r i n g ” v a l u e =” g 2 ” />

< / P a r a m e t e r L i s t>

<!−− Computes D i f f e r e n c e = g 0−g 1 −−>
<P a r a m e t e r L i s t name=” D i f f e r e n c e ”>

<P a r a m e t e r name=” Type ” t y p e =” s t r i n g ” v a l u e =”Sum” />
<P a r a m e t e r name=” Terms ” t y p e =” s t r i n g ” v a l u e =” g 0 , g 1 ” />
<P a r a m e t e r name=” S c a l i n g ” t y p e =” s t r i n g ” v a l u e =” 1 .0 ,−1 .0 ” />

< / P a r a m e t e r L i s t>

Embedded in this XML input is the expression tree used in computing the objective. For instance
the Sum that comprises the objective term depends on the strings "DiffSquared" and "MY-Term"
whose values are defined further below in the XML input. The dependence on other terms is
terminated when a leaf response gi is found.

Given the input described above, Fig. 2.1 shows the class diagram designed for the calcula-
tion of an objective function. The ObjectiveFunctionFactory, has two primary methods. One
takes the users Teuchos::ParameterList that defines the objective function, and terms used to
construct it. The second method, build, builds a term in the objective function by name. The
choices for the string are defined by the names of the individual terms in the parameter list (e.g.
"Objective", "MY-Term", or "Difference" from the sample input above), or the leaf responses.
Notice that this method is also templated on the scalar type. This reveals the templating mecha-
nism that embeds the automatic differentiation into the construction of the objective function. This
method returns the second primary class from the UML diagram, an ObjectiveFunctionBase
object. This object takes a Teuchos::ParameterList that describes the sublist for the object.
This would correspond to the sublist named "Difference" in the example above. With the pa-
rameter list set the object can be initialized with an ObjectiveFunctionFactory object. The
initialization phase is where the term being initialized builds any other term, excluding leaves, it
may need. The final method, evaluate, takes as an argument a map between the name of the leaf
terms and their value. The method returns a scalar type with the result of the evaluation.

For first and second automatic derivative evaluation types, the evaluate method returns the
derivatives with respect to the leaves:

∂F
∂gi

,
∂ 2F

∂gi∂g j
for i, j = 1 . . .N. (2.9)

Given these values, its easy to compute the full derivative with respect to the state or control
variables using the precomputed derivatives ∂gi/∂u, ∂gi/∂ z, ∂ 2gi/∂u∂ z, ∂ 2gi/∂ z∂u, ∂ 2gi/∂u2,
and ∂ 2gi/∂ z2 and Eqs. (2.5), (2.7). Separating the responses from the objective function limits the
extent to which the application code is responsible for building up an objective function, while still
automating the evaluation of objective function values and derivatives.
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Figure 2.1. A UML diagram of the class hierar-
chy required for the objective function calculator. The
ObjectiveFunctionFactory class provides a uniform interface
for constructing objective functions. Then using composition a
complex calculation of the objective function can be constructed.
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Figure 2.2. The four fundamental optimization problem types
that can be solved with ROL

2.3 Rapid Optimization Library (ROL)

The Rapid Optimization Library (ROL) is a modular C++ package for large-scale numerical op-
timization. This project has provided substantial support for ROL’s development. ROL is unique
in the field of optimization software in that it provides an abstract interface for the constituent ele-
ments of an optimization problem: vectors, objective functions, equality constraints, etc. which are
then overloaded via virtual inheritence at the application level to encapsulate the specific physics
and data structures needed by the problem. For example, ROL provides base classes ROL::Vector
and ROL::Objective which satisfy the function signatures of its algorithm components and the
application developer must implement concrete AppVector and AppObjective that inherit from
these classes. ROL solves four basic types of optimization problems, which are unconstrained (U),
bound constrainted (B), equality constrained (E), and equality-bound constrained (EB), which can
be written in the following forms:

More generally, problems may also have inequality constraints ci(x)≤ 0, however, introduction
of slack variables transforms the problem to Type-EB. Direct solution of a problem of Type-EB
in which the equality and bound constraints are exactly enforced is computationally prohibitive at
the scales needed for PDE-constrained optimization as the lack of convexity makes the problem
NP hard. To circumvent this, ROL uses step classes which either incoporate the bound constraints
into the objective or the equality constraint by means of a penalty term. These approaches are
implemented in ROL::MoreauYosidaStep and ROL::AugmentedLagrangianStep, respectively.

In the early stages of ROL development, the interface design was limited to a specific sub-
set of vector operations such as linearity that were motivated by the mathematics of vector space
operations. Additionally, the algorithms are agnostic to the indexing of vector elements. That is
to say that the solver components of ROL do not assume that direct access to the kth element of
a given vector is possible. Bound constraints of the form `i ≤ xi ≤ ui can not be imposed using
only linear operations on vectors and prior to this project, ROL provided an abstract interface class
ROL::BoundConstraint and an example implementation when the application vector class con-
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tains an std::vector object. To solve optimization problems with other concrete vector types
required inheriting corresponding classes from ROL::BoundConstraint. This project supported
the development of a more general and abstract way of formulating entities such as bound con-
straints in ROL. By adding the capability to evaluate nonlinear elementwise functions on vectors,
it became possible to provide a bound constraint interface which was independent of the concrete
vector class.

In the context of PDE-constrained optimization problems, the PDE constraint can be written
in general as c(u,z) = 0 where u dentotes a simulation variable which is the solution to the PDE
and z is an optimization variable to be determined such that a figure of merit involving u ∈ U
and z ∈Z is maximized or minimized. ROL provides an additional layer for vectors, objectives,
and constraints collectively referred to as the SimOpt interface. Neglecting, for the time being,
the additional complexities introducted by bound or inequality constraints, the PDE-constrained
optimization problem can be written in the full-space representation as

min
u,z

f (u,z) subject to c(u,z) = 0 (2.10)

In many physical applications, the constraint condition c(u,z) = 0 has certain favorable proper-
ties such as posessing an unique solution u∗ for a given z∗. With appropriate boundary conditions
and restrictions on z, this is always the case when the constraint is linear in u as it is for linear
elasticity and Maxwell’s equations. Whenever the constraint has a solution and its Jacobian with
respect to u is nonsingular, the constraint is exactly satisfied and the simulation variable u can
be eliminated by recognizing that it is an implicit function of z. This leads to the reduced space
problem in terms of the optimization variable z alone.

min
z

f (u(z),z) (2.11)

ROL provides the step classes ROL::LineSearchStep and ROL::TrustRegionStep for solv-
ing problems in the reduced space setting and ROL::CompositeStep for the full space setting,
which is a sequential quadratic programming solver that simultaneously computes the pair (u,z).
There are a few important differences between the full space and reduced space optimization prob-
lems. In the reduced space setting, the dimensionality of the solution is typically greatly reduced,
for example, u might represent electric and magnetic fields that are time-dependent and z could
be some time-independent scalar material property. In the full space setting, it would be neces-
sary to store entire space-time, vector-valued functions evaluated on a finite element grid. The flip
side of this expense is that it is readily conceivable that the full-space problem could have better
scaling in the sense of less distended level sets of the objective. Additionally, the PDE constraint
is not required to be exactly satisfied during the sequence of computing iterates; it is penalized in
such a way that the PDE residual is reduced to a prescribed tolerance as part of a stopping crite-
rion. The ROL SimOpt interface allows the application developer to switch between full-space and
reduced-space solution methods by modifying a parameter input.

The bound constraints can be directly imposed on reduced space problems. ROL can solve
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bound-constrained (Type-B) problems via linesearch using, for example, projected gradient or
Newton methods that exactly enforce the bounds. Additionally, ROL has provided a trust region
solver that incorporates bound constraints into a local model, which will be referred to as the
Kelley-Sachs model [21], of the objective using projection methods in conjunction with Truncated
CG, (double) dogleg, and Cauchy point methods. When the Kelley-Sachs model was applied to
solving some electrical conduction topology optimization problems in the reduced space setting,
very slow convergence was observed. At the time, it was posited that the concavity and disparate
scaling of the Solid Isotropic Material with Penalization (SIMP, see Chapter 3 for more discussion)
objective may have been impeding progress of iterates to the domain boundary, where the optimal
binary solution is sought.

In much of the existing literature on the solution of topology optimization problems, the authors
employ a sequential approximation method called the Method of Moving Asymptotes (MMA) or
some variation on it. The reason for this is that even topology optimization problems involving
linear PDEs tend to be non-convex and exhibit highly nonuniform gradient scaling, particularly
in the case of using the SIMP method. MMA construct a sequence of convex model objective
functions which locally match the Taylor series of the original objective to low order and implicitly
enforce the bound constraints. The MMA objective can be written in the form

f̃ (k)(xk)+
n

∑
j=1

p j(k)
u j− x j

+
q(k)j

x j− ` j
(2.12)

where the numerators under the summation are

p(k)j = (u j− x(k)j )2 max
{

0,
∂ f
∂x j

(x(k))
}
, q(k)j = (x(k)j − ` j)

2 max
{

0,− ∂ f
∂x j

(xk)

}
(2.13)

There are a few significant reasons that MMA was not pursued as a solution strategy for topol-
ogy optimization problems incolving electromagnetics: MMA yields mesh-dependent solutions,
computational cost scales poorly with problem degrees of freedom, and anecdotal evidence from
review articles [34, 23] indicated that more standard optimization methods such as the primal-dual
interior point methods could yield better performance. At the outset, it was not yet possible to
implement MMA in ROL in a generic fashion as MMA requires nonlinear operations on vectors.
While the constraint Jacobians could be represented as a vector of vectors, elementwise operations
on these are also required. It is also unclear how this method could be generalized to a func-
tion space setting when there are primal and dual vectors which are elements of different function
spaces and Riesz mappings between spaces.

2.3.1 Trust Region Models

It became clear that ROL would require an augmented set of vector operations to implement an
interior point solver, generalize bound constraint handling to arbitrary types, and impose inequal-
ity constraints such as volume limits on structural designs. To address these needs, elementwise
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operations were added to ROL in the form of unary, binary, and reduce vector methods. These
methods do not require access to specific elements, per se. ROL’s algorithms do not ever need
to know how to read or write the ith element of a vector, as doing this in a general way could
lead to prohibitively strict assumptions about the application data structures and how they may be
manipulated, for example, on a distributed computing platform. The three types of elementwise
operations can be represented as

Unary: xi← f (xi), Binary: xi← f (xi,yi), Reduce:r = reduce(r,xi) ∀i (2.14)

While the above expressions involve elements of vectors, ROL does not invoke them directly,
but rather it is up to the application code to provide ROL with the resulting quantities.

Another consequence of being able to evaluate arbitrary functions of vector elements was that
we were able to incorporate an alternative trust region model, originally proposed by Coleman
and Li[8], which has in excess of two thousand citations in the literature for bound-constrained
nonlinear programming problems. The Coleman-Li model had not been incorporated into ROL
earlier as it was not possible to do so in type-invariant way and required leveraging the newly-
implemented elementwise vector operations.

As a comparison, the Kelley-Sachs model uses projection methods to ensure that trust region
steps remain in the intersection of the trust region hypersphere and the n-orthotope defined by the
bound constraints. The Coleman-Li model, in contrast, applies a diagonal transform matrix to the
trust region step vector such that the level sets of the model are hyperellipsoids. The transformation
matrix, D is constructed according to the multiple case formula

Dii(x) := diag(|vi(x))|−1/2), vi(x) =





ui− xi gi < 0, ui ≤ ∞

xi− `i gi ≥ 0, `i ≥−∞

−1 gi < 0, ui = ∞

1 gi ≥ 0, `i =−∞

(2.15)

where li ≤ xi ≤ ui are the bounds on the ith optimization variable and gi is the ith component of
the gradient of the objective. This transformation D scales the step in such a way that it is always
strictly interior and only asymptotically reaches the boundary. To benchmark the comparative per-
formance of the Kelley-Sachs (KS) and Coleman-Li (CL) models, as well as the Moreau-Yosida
and Augemented Lagrangian approaches to handling bound and (in)equality constraints in tan-
dem, we implemented a test suite which solves the first 41 test problems introduced by Hock and
Schittkowski[17] (HS#). The first five of the test problems are Type-B and amenable to ROL’s
trust region solver with either of the two implemented models. They also serve as visually in-
structive examples as we can plot the progress of an optimization algorithm in two-dimensional
space. As far as we are aware, these two approaches to handling bound constraints in a trust region
framework have never been compared.

In the context of PDE-constrained optimzation problems the predominant computational cost
is that in satisfactorially solving the constraint PDEs themselves. While the cost of a PDE solve

25



2 1 0 1x1

1

0

1

2
x 2

5
50 50

500

50
0

500

1000

10
00

H&S Problem 1 : Kelley-Sachs

2 1 0 1 2x1
2

1

0

1

2

x 2

5
50 50

500

50
0

500

1000

10
00

H&S Problem 1 : Coleman-Li

Figure 2.3. In HS1, both models succeed in finding the mini-
mizer, however, CL converges with significantly fewer objective
and gradient evaluations. The objective evaluation points are re-
markably the same for both models in this example.

is independent of the optimization algorithm used, the number of solves needed to resolve a mini-
mizer is aggregated from the number of objective function and gradient evaluations, as well as the
generation of Krylov vectors for methods using Newton-Krylov iterations. For this reason, when
we consider comparative performance of the two trust region models, it is important to consider not
only the number of optimzation iterations needed, but also the underlying cost of those iterations

Problem HS1 (2.16) shows the CL model leading to convergence that is significantly superior
to that of Kelley-Sachs

f (x) = 100(x2− x2
1)

2 +(1− x1)
2, −1.5≤ x2, x0 = (−2,1), x∗ = (1,1) (2.16)

The initial guess x0 is feasible and the gradient can be badly scaled. The optimal solution x∗ is
strictly interior and the CL solve attains a satisfactory minimizer with 45 objective function (#fval)
and 35 gradient (#grad ) evaluations, whereas the KS solve takes #fval=123 and #grad=57. When
the minimizer is strictly interior, but the trust region model predicts it to be outside the domain, it is
plausible that the KS method could be inefficient. The locations of the iterates in the optimization
space and the isocontours of the objective are shown in figure 2.3.

In contrast, HS2 is almost identical to HS1 with an infeasible starting guess of x0 = (−2,1).
KS reaches the minimizer in about 75% the iterations it needed for HS1, while CL fails to converge
to the desired solution as it becomes trapped in a local minimizer. KS produces many iterates that
are far from the minimizer because in this neighborhood, the objective can only be approximated
by the first three terms in its Taylor series within a small radius.
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Figure 2.4. The CL model fails to converge due to an infeasible
initial guess. KS makes numerous evaluations outside of the plot
and far from the minimizer.

f (x) = x2 +10−5(x2− x1)
2, 0≤ x2 (2.17)

HS3 (2.17) has a convex quadratic objective function, albeit with a Hessian that has highly
dissimilar eigenvalues. The CL model excels in this situation as the diagonal transformation of
the trust region model and step allows for two CG iterations, which span the entire space, and
convergence is obtained within a single iteration. KS, in contrast, takes only one truncated CG
iteration per optimization step because the predicted minimizer lies outside the trust region radius.
Consequently, KS produces an iterate on the boundary which then proceeds along towards the
minimizer2.5.

HS4 is essentially the converse of HS3, where CL is quite slow as it can only take a single
CG iteration each step due to the model mimimizer lying outside of the trust region, whereas KS’s
model allows both CG iterations to be performed and the method converges in one step2.6.

CL has the better convergence in the last test problem 2.18 for similar reasons as HS3. Again,
the CL model allows for two CG iterates while KS gets only one for most of the time. The approach
of the minimizer is much more uniform as well and the problem is nearly solved within a couple
of iterations.

f (x) = sin(x1 + x2)+(x1− x2)
2−1.5x1 +2.5x2 +1, −1.5≤ x1 ≤ 4, −3≤ x2 ≤ 3 (2.18)

The comparative performance in these test problems of the CL and KS approaches to handling
bound constraints with trust regions leads to a few observations about their potential merits. The
CL method looks like the better choice for problems where the initial guess and the minimizer
are both interior to the bounded set. This is, of course, not going to be the case with topology
optimization problems where a solution is desired to be on the surface of the bounded set as part
of the binary design.
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Figure 2.5. Results for a quadratic objective with highly elliptical
level sets.
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Figure 2.6. CL exhibits slower convergence than KS.
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Figure 2.7. CL finds the neighborhood of the minimizer almost
immediately, but then must take several small steps to satisfy the
gradient norm requirements.

2.3.2 Constrained Optimization Algorithms

All topology optimization problems considered in this work have the abstract form

min
x∈X

f (x) (2.19a)

subject to g(x) = 0 (2.19b)
h` ≤ h(x)≤ hu (2.19c)
x` ≤ x≤ xu. (2.19d)

Upon first glance, optimization problem (2.19) does not fit into the problem types handled by ROL.
However, by adding “slack” variables to (2.19c), we arrive at a Type-EB problem. That is, let s be
a vector in the range of h, denoted by H , then we can equivalently reformulate (2.19c) as

h(x)− s = 0 and h` ≤ s≤ hu,

resulting in the Type-EB problem

min
x∈X ,s∈H

f (x) (2.20a)

subject to c(x,s) :=
(

g(x)
h(x)− s

)
= 0 (2.20b)

x` ≤ x≤ xu (2.20c)
h` ≤ s≤ hu. (2.20d)

Under this project, we implemented this slack variable transformation in the new ROL class
ROL::OptimizationProblem. In addition to transforming problems of type (2.19) to (2.20),
ROL::OptimizationProblem also has general capabilities to check the input vectors and the
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Figure 2.8. Some optimization algorithms are constructed by re-
ducing an initially hard problem hierarchically into subproblems
that can be addressed by existing algorithms. This figure demon-
strates how a constrained optimization algorithm can be translated
into an augmented Lagrangian formulation, utilizing a trust region
solver, that in turn utilizes a Steihaug-Toint CG (STCG) algorithm
to solve the quadratic programming problem.

derivatives of the input functions using finite differences. This capability to perform a derivative
check is a critical tool in ensuring correct implementation of (2.20). To better streamline ROL’s in-
terface, we additionally implemented the new class ROL::OptimizationSolver. ROL::OptimizationSolver
constructs a ROL::Algorithm based on user input or constructs the default for the problem type de-
fined by ROL::OptimizationProblem. Additionally, ROL::OptimizationSolver provides the
capability for the user to provide their own ROL::StatusTest for terminating the optimization.

To solve problems of type (2.20), we have developed three primary capabilities: Augmented
Lagrangian, Moreau-Yosida penalty and interior points. Each of these approaches penalizes dif-
ferent constraints in (2.20) and solves subproblems of Type-E or Type-B. We depict this penaliza-
tion and reduction to simpler subproblems in Figure 2.8 for the case of Augmented Lagrangian.
Throughout the subsequent discussions, we assume the range of g is a reflexive Banach space,
denoted G , H = L2(Ω,B,m) and X = L2(Ξ,F ,n) where (Ω,B,m) and (Ξ,F ,n) are measure
spaces. We denote the duality pairing on G by 〈·, ·〉G ∗,G where G ∗ denotes the topological dual
space of G . We further denote the inner products on H by

〈s, t〉H =
∫

Ω

s(ω)t(ω)dm(ω)

and similarly for X .
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Augmented Lagrangian. The Augmented Lagrangian algorithm [2, 9, 31] is popular due to its
simplicity. Our implementation of Augmented Lagrangian first constructs the so-called agumented
Lagrangian functional

Lr(x,s,λ ,µ) := f (x)+ 〈λ ,g(x)〉G ∗,G + 〈µ,h(x)− s〉H +
r
2
(
‖g(x)‖2

G +‖h(x)− s‖2
H

)
.

The traditional Augmented Lagrangian algorithm then minimizes Lr(·, ·,λ ,µ) for fixed r > 0, λ ∈
G ∗ and µ ∈H . That is, at iteration k, we have a current penalty parameter rk > 0 and multiplier
estimates λk and µk. Using this information, we approximately solve

min
x∈X ,s∈H

Lrk(x,s,λk,µk) (2.21a)

subject to x` ≤ x≤ xu (2.21b)
h` ≤ s≤ hu (2.21c)

using ROL’s Type-B capabilities. This produces the new iterates xk+1 and sk+1, and using these
values we update the multipliers using the steepest ascent steps

λk+1 = λk + rkRgg(xk+1) and µk+1 = µk + rk(h(xk+1)− sk+1)

where Rg is the linear injection operator mapping the range of g into its topological dual space.
Once the multipliers are updated, the penalty parameter rk is either increased or decreased de-
pending on constraint feasibility. The Augmented Lagrangian approach is implemented in ROL as
ROL::AugmentedLagrangianStep.

Moreau-Yosida Penalty. The Moreau-Yosida penalty method is closely related to the Aug-
mented Lagrangian method [20]. For this method, we first consider the partially augmented La-
grangian

Lr(x,s,µ) := f (x)+ 〈µ,h(x)− s〉H +
r
2
‖h(x)− s‖2

H ,

for fixed x, µ and r. Minimizing Lr(x, ·,µ) over h` ≤ s≤ hu results in the optimal slack variable

s? = min{hu,max{h`,r−1
µ +h(x)}}

where the min and max operators are understood “pointwise” in Ω. Now, evaluating Lr(x, ·,µ) at
s? yields

Lr(x,s?,µ) = f (x)− 1
2r
‖µ‖2

H

+
r
2
‖max{0, (h`− r−1

µ)−h(x)}‖2
H +

r
2
‖max{0, h(x)− (hu− r−1

µ)}‖2
H .

We can produce the same penalization for the bound constraints x` ≤ x≤ xu resulting in the penal-
ized objective function

Φr(x,µ,ν) = f (x)− 1
2r
‖µ‖2

H −
1
2r
‖ν‖2

X

+
r
2
‖max{0, (h`− r−1

µ)−h(x)}‖2
H +

r
2
‖max{0, h(x)− (hu− r−1

µ)}‖2
H

+
r
2
‖max{0, (x`− r−1

ν)− x}‖2
X +

r
2
‖max{0, x− (xu− r−1

ν)}‖2
X .
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Therefore, at iteration k of the Moreau-Yosida penalty algorithm, we are given the current penalty
parameter rk > 0 and the current multiplier estimates µk and νk. Using this information we ap-
proximately solve the subproblem

min
x∈X

Φrk(x,µk,νk)

subject to g(x) = 0

using ROL’s Type-E capabilities. This produces the new iterate xk+1 which we then use to update
he multiplier estimates as

µk+1 = max{0, (h`− r−1
µk)−h(xk+1)}+max{0, h(xk+1)− (hu− r−1

µk)}

and
νk+1 = max{0, (x`− r−1

ν)− x}+max{0, x− (xu− r−1
ν)}.

The penalty parameter is either increased or decreased according to the progress of the algorithm.
Notice that this algorithm is not required to produce feasible iterates xk as we are not strictly
enforcing the bound constraints. The Moreau-Yosida penalty algorithm is implemented in ROL as
ROL::MoreauYosidaPenaltyStep.

Interior Point Methods The large production codes for the solution of numerical optimzation
problems generally make use of sequential quadratic programming or primal-dual interior point
methods (PDIP). Among the most heavily cited in the literature are KNITRO[6], LOQO[36] and
IPOPT[37]. These codes have a long history and date back anywhere between a dozen and nearly
30 years. They do not, however, use application data structures as ROL does, leading to cumber-
some and inefficient interfaces for PDE-constrained problems. Additionally, they may make use of
factorizations of matrices which are prohibitively computationally expensive or even impossible to
obtain in large-scale multiphysics problems. For example, primal-dual systems are almost always
indefinite meaning their solution vectors are not not generally descent directions that would be of
use to a globalizing line-search method. A typical remedy to this problem, taken by IPOPT, for
example, is to add a multiple or block multiple of the identity to the primal-dual KKT matrix so
as to make it positive definite. Appropriate weighting factors are determined using information
gathered from matrix factorizations, which is not possible in a matrix-free setting.

In consideration of how interior point methods could be implemented in ROL, we reviewed the
general approach taken by some of these production codes. ROL’s first foray into implementing
interior points roughly follows the primal approach taken in NITRO, the progenitor to KNITRO,
which uses barrier penalities with SQP.

Consider the following nonlinear programming problem

min
x

f (x) (2.22a)

subject to ce(x) = 0 (2.22b)
ci(x)≥ 0 (2.22c)

`k ≤ xk ≤ uk. (2.22d)
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To solve (2.22) using interior points and ROL, we rely on ROL::OptimizationProblem to gener-
ate the slack variables and create or modify equality and bound constraints. The bounds are then
taken into the objective by means of a log barrier function leading to the Type-E problem

min
x,s

f (x)−µs

m

∑
j

ln(s j)−µx

n

∑
k
{ln(xk− `k)+ ln(uk− xk)} (2.23a)

subject to ce(x) = 0 (2.23b)
ci(x)− s = 0. (2.23c)

Where m and n are the dimensions of the inequality constraint and optimization spaces, re-
spectively. The logarithms of vectors are implemented using the elementwise operations described
earlier.

Problems of this form for fixed penalty parameters µx and µs can be solved using ROL’s Type-
E capabilities such as ROL::CompositeStep or ROL::AugmentedLagrangianStep, which are
encapsulated by the primal solver ROL::IteriorPointStep. This IP step reduces the objective
through solving a sequence of penalized problems. Testing of this primal IP method on the HS test
problems demonstrated slow convergence, typically comparable to ROL::MoreauYosidaStep or,
in some cases, worse. The primal IP approach using log barriers is problematic when minimizers
lie on boundaries as the unbounded objective forces iterates to remain strictly interior. This point is
clearly in opposition to the needs of binary material design in topology optimization. Combining
this observation with recent findings[34, 23] that have benchmarked the performance of a variety of
general purpose and structural optimization problems motivates implementation of PDIP methods
in ROL. A Type-EB problem with upper and lower bounds has the following structure for the
linearized KKT system.




Wk Jk −I I
J>k 0 0 0
Z`

k 0 Xk−L 0
−Zu

k 0 0 U−Xk







δxk
δλk
δ zk


=−




∇ f (xk)+ Jkλk− zk
c(xk)

z`k(xk− `)−µe
zu

k(u− xk)−µe


 (2.24)

where λ , z`, and zu are the multipliers for the equality, lower, and upper bound constraints respec-
tively, Jk = ∇c(xk), and Wk = ∇2

xL (x,λ ,z`,zu). Use of the capital letter representation Xk denotes
a diagonal matrix containing the iterate vector xk as its diagonal band. The same applies to Z`

k and
Zu

k .

IPOPT solves the primal-dual KKT system and performs a line-search filter method that bal-
ances reduction in objective value and constraint norms with switching conditions. Many of the
necessary components for a PDIP solver in the style of IPOPT have been implemented in ROL.
These components include objects for the primal-dual residual, KKT hessian, symmetrization op-
erators, merit function as well alternate method of introducing boundary constraints into objective
penalties. As could be expected, however, when solving PDIP systems with conjugate gradient
methods terminate after only a few iterations due to negative eigenvalues and GMRES typically
requires nearly as many Arnoldi vectors as the dimensionality of the system, to only to produce
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a non-descent vector. These results and the observation that the convergence of the KS and CL
trust region models were contingent on the number of Arnoldi vectors produced before terminat-
ing due to negative eigenvalues highlight a need for greater ability to handle nonconvexity of the
type arising in topology optimization problems.
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Chapter 3

Topology Optimization for Structural
Design

3.1 Overview

In this chapter, we consider the problem of designing minimally compliant elastic structures.
Throughout, we let D denote the physical domain with boundary ∂D. We denote the Dirichlet
(fixed) boundary as /0 6= Γd ⊂ ∂D and the Neumann (traction) boundary as Γn = ∂D \Γd . We
consider the minimum compliance topology optimization problem

min
0≤z≤1

`(S(z)) subject to
∫

D
z(x)dx≤ v0|D| (3.1)

where Z = L2(D), v0 ∈ (0,1) is the volume fraction, ` ∈ (H1(D)2)∗ is a prescribed load and u =
S(z) ∈ H1(D)2 solves the weak form of the linear elasticity equations

−div(ρ(z)E : ε(u)) = ` in D (3.2a)

ε(u) = 1
2(∇u+∇u>) in D (3.2b)

u = 0 on Γd (3.2c)
(ρ(z)E : ε(u))n = 0 on Γn. (3.2d)

Here, n denotes the outward normal vector of Γn, E is the stiffness tensor and ρ(z) is the the density

[ρ(z)](x) = (ρu−ρ`)[F(z)](x)3 +ρ`, 0 < ρ` < ρu < ∞.

This specific form of ρ is known as the Solid Isotropic Material with Penalization (SIMP) model
[1]. In the SIMP model, F(z) is the filtered density. To filter, we utilize the Helmholtz filter
described in [25]. The goal of filtering, in this context, is to enforce a length scale in the optimal
design. We will additionally consider the volume topology optimization problem

min
0≤z≤1

∫

D
z(x)dx subject to `(S(z))≤ c0`(S(z0)) (3.3)

where z0 ≡ 1 and c0 > 0. The constraint in optimization problem (3.3) can be viewed as a “safety”
requirement. For example, any feasible design can not be more than twice (if c0 = 2) as compliant
as the solid beam.
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Figure 3.1. One-dimensional compressed beam and its two-
element discretization.

3.2 Analytic Results

As topology optimization has most often been applied to the design of support structures, it is
valuable to investigate in simplified limiting cases how the form of the problem leads to numerical
challenges. Furthermore, problems with two-dimensional optimization spaces afford the additional
advantage of being able to easily visualize where and why algorithms may exhibit slow conver-
gence.

3.2.1 Two-element compressive beam model

A simple example that shares the bilinearity of the constraint equation is that of a compressed beam
with a spatially varying modulus. This model is, admittedly, not physically realistic, however, it
lends itself to a simple analytical solution, which makes it worth considering before proceeding to
more physical models which can not be so easily visualized.

In this example, one aims to find the distributed material parameter that minimizes compression
due to a fixed load and constraints on weight. Let the beam, depicted in 3.2.1, be modeled by a
one-dimensional Poisson equation:

− d
dx

(
ρ(x)

du
dx

)
= 0, u(−1) = 0, u′(1) = f (3.4)

Using the standard cubic SIMP parameterization of the modulus ρ(x) = ρl +(ρu− ρl)z3(x)
where ρl,u is the lower and upper bounds of the modulus with 0 ≤ z ≤ 1, we can exactly solve
the discretized boundary value problem when we assume a piecewise linear displacement and
piecewise constant modulus. Supposing the domain is partitioned into two equal subintervals,
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Figure 3.2. Logarithm of the objective function when ρu = 10ρl
and regions in which the objective is locally convex.

I1 = [−1,0] and I2 = [0,1], we have the optimization variables

z(x) = z1χ1(x), z2χ2(x), χi(x) =

{
1 x ∈Ii

0 otherwise
(3.5)

and the exact displacement is

u(x) =





f ρl+(ρu−ρl)z3
2

ρl+(ρu−ρl)z3
1

x ∈I1

f
(

ρl+(ρu−ρl)z3

ρl+(ρu−ρl)z3
2
+ x
)

x ∈I2
(3.6)

Since the displacement is exactly known in terms of the moduli, it is possible to write an
objective function which minimizes compressive (or tensile) displacement as

J(u(z)) =
1
2
[u2(+1)]2 =

1
2

(
1+

ρu +(ρu−ρl)z3
2

ρu +(ρu−ρl)z3
1

)2

(3.7)

and we can also write its gradient, Hessian, and inverse Hessian in closed form. Given the bound
constraints, the objective is minimized when z2 = 1 and z1 = 0. The objective is plotted on a log
scale in Figure 3.2. The negative curvature can be clearly seen and the regions in which the Hessian
is indefinite or positive definite are shown as well.

When the ratio of ρu/ρl is made progressively larger, the region in which the Hessian has two
positive eigenvalues becomes smaller. Applying the Kelley-Sachs (KS) and Coleman-Li (CL) trust
region models to solving the optimization problem, we find that KS converges much faster than CL
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Figure 3.3. Locations of the optimization iterates for the
Coleman-Li model (left) and Kelley-Sachs model (right) for the
compressive beam problem.

due to quickly finding the lower boundary and proceeding along the boundary to the minimizer.
CL, by contrast, follows a central path which approaches the z = (1,0) corner asymptotically. The
reason for this difference is that while both methods only generate one Arnoldi vector per iteration,
this is sufficient for KS as the problem has become a one-dimensional minimization by the second
iteration. Since CL remains strictly interior its truncated CG iteration terminates early and can not
take as large of a step. The convergence of both KS and CL is depicted in Figure 3.3.

3.2.2 Euler-Bernoulli beam model

A more physically realistic model of a beam subjected to a load is the Euler-Bernoulli beam. The
Euler-Bernoulli beam equation is a linear model of a beam with uniform cross-section, so that the
resulting equation is a two-point boundary value problem. Like the above example and the electro-
magnetics design problems of interest, the PDE constraint is linear and the optimization variable
(modulus) appears multiplying the simulation variable (deflection), however, the constraint equa-
tion is fourth order.

On the computational domain I = [0,L] let the beam be described by the boundary value
problem

d2

dx2

(
E(x)

d2

dx2 w(x)
)
= 0, w(0) = w′(0) = E(L)w′′(L) = 0, [Ew′′]′(L) = F (3.8)

where w(x) is the deflection of the beam from equilibrium, E(x) is a spatially-varying modulus,
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Figure 3.4. Deflection of a two-element Euler-Bernoulli beam
subjected to a downward shear point force for three element mod-
ulus combinations.

and the boundary conditions indicate that the beam is clamped at the left end and subjected to a
point shear force without torque at the right end. Let the domain be uniformly partitioned into n
subintervals and the modulus be constant on each so that E(x) = E1χ1(x)+ · · ·+Enχn(x) where

χk(x) =

{
1 x ∈Ik

0 otherwise
, Ik = [xk−1,xk], xk =

kL
n

(3.9)

Since the problem is homogeneous, the deflection must be piecewise cubic.

w(x) =
n

∑
j=1

χk(x)(ak +bkx+ ckx2 +dkx3), χk(x) =

{
1 xk−1 < x < xk

0 otherwise
(3.10)

The coefficients can be determined from the boundary conditions and the requirement that
w ∈C1(I ) and by satisfying jump conditions at the interfaces between subdomains. Given a test
function φ ∈C1, it is required that

xk+ε∫

xk−ε

φ
d2

dx2

(
E

d2w
dx2

)
dx = φ

d
dx

[
E

d2w
dx2

]xk+ε

xk−ε

−
xk+ε∫

xk−ε

dφ

dx
E

d2w
dx2 dx = 0 (3.11)

Surprisingly, it happens that one can write out the exact deflection and the objective.
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J(E) = F2LF3
n

∑
k=1

cn
k

Ek
, cn

k =
3(n− k)(n− k−1)+1

3n3 (3.12)

Similarly, the gradient and Hessian are

∂J
∂Ei

(E) =−F2L3 cn
i

E2
i
,

∂ 2J
∂Ei∂E j

(E) = 2F2L3 cn
j

E3
j
δi j (3.13)

This remarkable result shows that the bound constrained problem is everywhere convex. The
Hessian is diagonal, so its inverse can be trivially applied for Newton’s method. However, the
Euler-Bernoulli beam constraint is illustrative of scaling problems that can arise in the gradient
as the number of elements increases. The ratio of the largest to smallest element of the Hessian
increases quadratically meaning that although the objective is convex, its level sets become severely
distended with mesh refinement. It is also clear that the Newton step does not exhibit this mesh
dependence

δENewton
k =−

(
∂ 2J(E)
∂E jEk

)−1
∂J(E)
∂Ek

=
Ek

2
(3.14)

Linear elasticity constraints in two or three dimensions, unfortunately, do not give rise to a
diagonal Hessian and so Newton-Krylov methods must be used instead. Additionally, this analysis
has not yet included either a mass constraint or the requirement for a binary design. Applying
SIMP to this problem removes its convexity and the above terms can not be written so succinctly.

The fourth-order beam problem can be solved using the finite element method with globally
C1 basis functions. We use Hermite interpolating polynomials. An implementation of arbitrary
order Hermite interpolating basis functions was developed and added to the finite element package
Intrepid [4].

The modulus can be taken to be piecewise constant on the elements. Let L be tall matrix
containing the second derivatives of the global basis functions, u ∈ RN be a vector containing
the pointwise values and first derivatives of the displacement, z ∈ Rm be a vector of the modulus
parameter with 0 ≤ z ≤ 1. Let p : [0,1]→ [ρ`,ρu] be the interpolating material penalty function.
The equality constraint can be written in matrix-vector form as

c(u,z) = L>diag[p(z)]Lu− f (3.15)

The constraint Jacobian terms can be expressed as

cuv = L>diag[p(z)]Lv, czv = L>diag[p′(z)v]Lu (3.16)
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Figure 3.5. Effect of power p in the SIMP parameterization
E(z) = E1 + (E2− E1)zp for computing the optimal beam com-
position subject to 0≤ z≤ 1 and that at most half of the structure
be composed of the heavier, less compliant material.

The adjoint Hessian components are

cuu(v,w) = 0, cuz(v,w) = L>diag[p′(z)w]L>v, czz(v,w) = L>[p′′(z)vw]Lu (3.17)

A small application code using ROL, Intrepid, Sacado, and Teuchos to formulate and solve the
beam design problem has been developed. The Beam solver takes in a Teuchos::ParameterList
which allows the user to select number of cells, polynomial order, and a variety of physical, SIMP,
and optimization parameters to study the comparative performance of various solution methods
in full and reduced space. Running the solver under numerous combinations with an inequality
constraint on the mass such that its volume fraction may be at most half composed of the heavier,
less compliant material, revealed that the most rapidly convergent method was to solve the reduced
space problem using the augmented Lagrangian step. This is reasonable as the mass/volume in-
equality constraint is only a rank-one modification. While the Moreau-Yosida step worked well
for small numbers of elements (¡10), its convergence rapidly deteriorated for increasing mesh re-
finement. This is reasonable because as the mesh is refined, more bound constraint variables are
injected into the Moreau-Yosida penalty, whereas the scalar mass constraint relatively perturbs the
augmented Lagrangian objective less with increasing mesh refinement.

The optimal material distribution was computed for a 20-element beam subjected to a unit
downward shear point force on the free end with different powers in the SIMP formula. It was
found that while the usual cubic power did lead to a binary solution, it did not lead to the least
compliant solution: a bar that has the less compliant subdomain at the fixed end and the more
compliant solution at the free end. Instead, cubic SIMP produces a design with a more compliant
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subdomain to the left of the midpoint. In contrast, a quartic SIMP power gives exactly the idea so-
lution, as does a power of 7, however, intermediate and greater powers produce less ideal results. It
should be noted that this illustrates that the SIMP power is highly heuristic and problem-dependent
and we have observed that the optimal power varies when other parameters in the solver are al-
tered, suggesting that parameter studies are likely to be necessary whenever attempting to a solve a
problem with different physics and optimization algorithms. Typical convergence histories for the
20 element beam with a SIMP penalty power p = 7 are given for Moreau-Yosida and Augmented
Lagrangian below.

Moreau-Yosida Penalty solver
iter fval cnorm gnorm ifeas snorm penalty #fval #grad #cval subIter
0 1.868626e+01 1.110223e-16 4.243629e+00 0.000000e+00 1.00e+07
1 9.146490e+00 5.551115e-17 8.686863e+00 7.158914e-06 1.704540e+00 1.00e+07 403 403 3 200
2 9.136299e+00 1.110223e-16 3.845573e+00 0.000000e+00 2.692180e-03 1.00e+07 805 805 5 200
3 9.126872e+00 1.110223e-16 1.308698e+01 1.943322e-05 2.523928e-03 1.00e+07 1207 1207 7 200
4 9.113823e+00 1.110223e-16 3.971217e+01 1.195061e-04 3.539839e-03 1.00e+07 1609 1609 9 200
5 9.082965e+00 2.220446e-16 6.374760e+01 4.269913e-04 8.390998e-03 1.00e+07 2011 2011 11 200
6 9.064375e+00 1.665335e-16 3.845752e+01 1.505151e-04 5.019290e-03 1.00e+07 2413 2413 13 200
7 9.047617e+00 0.000000e+00 2.591743e+01 6.854177e-05 4.567540e-03 1.00e+07 2815 2815 15 200
8 9.036813e+00 1.110223e-16 2.611726e+01 5.786174e-07 2.973982e-03 1.00e+07 3217 3217 17 200
9 9.026860e+00 1.110223e-16 4.316148e+01 1.917340e-04 2.763313e-03 1.00e+07 3619 3619 19 200
10 9.016044e+00 0.000000e+00 2.649843e+01 7.191634e-05 2.973169e-03 1.00e+07 4021 4021 21 200

Material Vector:
0.999997 0.999997 1 0.997137 0.983323 0.941833 0.860208 0.740685 0.573279
0.433412 0.342481 0.278127 0.228509 0.187354 0.151102 0.117671 0.0858217 0.0548196
0.0242401 6.99213e-07

Augmented Lagrangian solver
iter fval cnorm gLnorm snorm penalty feasTol optTol #fval #grad #cval subIter
0 1.868626e+01 1.110223e-16 2.006954e+00 1.00e+01 1.26e-01 2.01e-02
1 2.000500e+00 5.000000e-01 0.000000e+00 2.236068e+00 1.00e+03 1.26e-01 1.00e-01 9 9 12 3
2 6.493453e+00 3.288875e-02 3.206684e-02 3.574827e+01 1.00e+03 6.31e-02 1.00e-04 31 22 41 7
3 6.729477e+00 1.262067e-02 1.304146e-06 1.378702e+01 1.00e+03 3.16e-02 1.00e-07 51 37 69 8
4 6.563757e+00 4.068084e-03 4.471448e-06 4.139070e+00 1.00e+03 1.58e-02 1.00e-10 83 51 115 15
5 6.525077e+00 1.709119e-03 1.293325e-09 1.735526e+00 1.00e+03 7.94e-03 1.00e-12 146 80 198 20
6 6.512132e+00 8.497433e-04 3.752768e-13 8.618968e-01 1.00e+03 3.98e-03 1.00e-12 158 89 214 4
7 6.507143e+00 5.039206e-04 1.109113e-13 5.094841e-01 1.00e+03 2.00e-03 1.00e-12 170 98 230 4
8 6.504662e+00 3.264123e-04 4.380396e-11 3.299625e-01 1.00e+03 1.00e-03 1.00e-12 205 107 274 9
9 6.504662e+00 3.264123e-04 6.528246e-03 3.264123e-01 1.00e+03 5.01e-04 1.00e-12 208 109 277 1
10 6.504662e+00 3.264123e-04 6.528246e-03 3.264123e-01 1.00e+03 2.51e-04 1.00e-12 211 111 280 1

Material Vector:
1 1 1 1 1 1 1 1 1 0.993472 0 0 0 0 0 0 0 0 0 0
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3.3 Scaling Results

When numerically solving infinite-dimensional optimization problems, such as the structural topol-
ogy optimization problems discussed in this chapter, it is important to use algorithms that scale
with problem size. That is, the number of optimization iterations, function and evaluations, etc.,
remain constant as the underlying discretization is refined. This scaling property is often called
mesh independence. In this section, we investigate the mesh independent performance of ROL’s
Augmented Lagrangian implementation.

3.3.1 2D Results

We consider (3.1) constrained by (3.2) with D= (0,2)×(0,1), Γd = {0}× [0,1], and v0 = 0.4. The
load ` in this example is a Gaussian load of width 10−2 applied at x = (2,0.5). As with any penalty
method for optimization, the performance of Augmented Lagrangian degrades when the penalty
parameter r > 0 becomes large. Additionally, the performance depends on the initial choice of
r. For example, if r is chosen to be too large, then the constraint violation is emphasized over
minimizing the objective function. This imbalance can lead to poor performance. To circumvent
some of these issues, we scale the objective function. Using Körn’s inequality, we have (under
appropriate assumptions on E) that there exists e0 > 0 such that

ρ`e0‖v‖2
H1(D)2 ≤

∫

D
(ρ(z)Eε(v)) : ε(v)dx ∀v ∈ H1(D)2. (3.18)

The bilinear form on the right hand side of (3.18) is the bilinear form of the linear differential
operator in (3.2). By continuity of the right hand side of (3.2) and the fact that u solves the weak
form of (3.2), we additionally have that

∫

D
(ρ(z)Eε(u)) : ε(v)dx≤ ‖`‖(H1(D)2)∗‖v‖H1(D)2 ∀ v ∈ H1(D)2. (3.19)

Combining (3.18) and (3.19) gives the following bound on the objective function in (3.1)

0≤ `(S(z))≤ (ρ`e0)
−1‖`‖2

(H1(D)2)∗ =: c0.

We can then use c−1
0 to scale the objective function in (3.1) which ensures that the objective will

be between zero and one. We similarly scale the volume constraint in (3.1) using the reciprocal of
max{v0,1− v0}|D| to ensure that it also remains between zero and one.

With the objective and constraint scaling balanced, we achieve near dimension-independent
performance of ROL’s Augmented Lagrangian method. In the following tables, we list the iteration
histories for various discretization levels. Throughout, we discretize using continuous, piecewise
linear finite elements on quadrilateral meshes. We start with a coarse discretization on a 32× 16
mesh and refine to 64×32, 128×64, 256×128, 512×256 and 1024×512. Figure 3.3.1 depicts
the optimal designs for the different mesh sizes. As demonstrated in these figures, our optimal solu-
tions appear to be independent of mesh size. In addition, the subsequent tables demonstrate that, to
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reach the desired stopping tolerances, the Augmented Lagrangian method required seven or fewer
iterations for each mesh. For this example, ROL’s Augmented Lagrangian approach appears to be
mesh independent. However, the number of subproblem solver iterations (i.e., the subIter col-
umn) exhibits mild mesh dependence. The subproblem solver used for the Augmented Lagrangian
subproblems (2.21) is ROL’s Kelley-Sachs bound constrained trust-region solver. It is unknown
why this algorithm is performing poorly and improving the performance of this solver is the subject
of future investigation. We postulate that the inherent non-convexity of (2.21) may contribute to
this poor performance since the conjugate gradients subproblem solver within ROL’s Kelley-Sachs
bound constrained trust-region solver typically detects negative curvature after a single iteration.

Figure 3.6. Averaged “unfiltered” density optimization variables
z. Mesh refinement moves left to right and top to bottom: 32×16,
64×32, 128×64, 256×128, 512×256 and 1024×512.

32×16 Mesh.

Total optimization time = 5.69829 seconds.
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iter fval cnorm gLnorm snorm penalty feasTol optTol #fval #grad #cval subIter
0 8.184235e+00 2.312965e-17 8.443461e-01 1.00e+01 1.26e-01 8.44e-03
1 6.432870e-01 5.945460e-01 5.829618e-03 7.727374e-01 1.00e+02 1.26e-01 1.00e-01 20 20 29 9
2 1.505951e+00 2.598534e-02 5.905832e-02 3.400903e+00 1.00e+02 7.94e-02 1.00e-03 62 42 82 11
3 1.586642e+00 4.867299e-03 3.466893e-03 6.650050e-01 1.00e+02 5.01e-02 1.00e-05 125 76 165 20
4 1.604720e+00 6.748430e-04 6.594977e-06 1.217652e-01 1.00e+02 3.16e-02 1.00e-05 160 98 212 12
5 1.607248e+00 9.473762e-05 1.849492e-06 1.309413e-02 1.00e+02 2.00e-02 1.00e-05 176 108 235 7
6 1.607603e+00 1.323183e-05 1.083312e-07 1.828044e-03 1.00e+02 1.26e-02 1.00e-05 181 114 242 2
7 1.607653e+00 1.884085e-06 2.785854e-06 2.497436e-04 1.00e+02 7.94e-03 1.00e-05 184 118 246 1

64×32 Mesh.

Total optimization time = 31.8461 seconds.

iter fval cnorm gLnorm snorm penalty feasTol optTol #fval #grad #cval subIter
0 7.350310e+00 2.312965e-17 8.432039e-01 1.00e+01 1.26e-01 8.43e-03
1 5.896663e-01 5.583371e-01 5.890546e-03 7.669962e-01 1.00e+02 1.26e-01 1.00e-01 26 26 38 12
2 1.265732e+00 2.060445e-02 6.029734e-02 2.846216e+00 1.00e+02 7.94e-02 1.00e-03 64 48 87 11
3 1.320557e+00 6.655961e-04 7.679560e-03 2.719648e-01 1.00e+02 5.01e-02 1.00e-05 125 82 168 20
4 1.322635e+00 9.465609e-05 2.259543e-04 1.054762e-01 1.00e+02 3.16e-02 1.00e-05 166 112 229 20
5 1.322374e+00 1.706988e-05 1.582025e-04 2.409165e-02 1.00e+02 2.00e-02 1.00e-05 206 142 288 20
6 1.322343e+00 7.862833e-06 9.226552e-06 1.308840e-02 1.00e+02 1.26e-02 1.00e-05 236 166 336 18

128×64 Mesh.

Total optimization time = 106.897 seconds.

iter fval cnorm gLnorm snorm penalty feasTol optTol #fval #grad #cval subIter
0 7.103340e+00 2.312965e-17 8.428157e-01 1.00e+01 1.26e-01 8.43e-03
1 5.718634e-01 5.514543e-01 6.374464e-03 7.632149e-01 1.00e+02 1.26e-01 1.00e-01 26 26 38 12
2 1.208526e+00 1.367780e-02 4.172568e-02 2.156943e+00 1.00e+02 7.94e-02 1.00e-03 70 52 97 15
3 1.231317e+00 4.153054e-03 8.186762e-04 6.104486e-01 1.00e+02 5.01e-02 1.00e-05 115 88 161 19
4 1.242531e+00 4.216716e-04 2.593033e-04 9.070282e-02 1.00e+02 3.16e-02 1.00e-05 155 120 221 20
5 1.243795e+00 5.409758e-07 4.839722e-06 3.799744e-02 1.00e+02 2.00e-02 1.00e-05 178 140 257 13

256×128 Mesh.

Total optimization time = 466.188 seconds.

iter fval cnorm gLnorm snorm penalty feasTol optTol #fval #grad #cval subIter
0 7.069760e+00 2.312965e-17 8.427338e-01 1.00e+01 1.26e-01 8.43e-03
1 5.684030e-01 5.530874e-01 8.406265e-03 7.575763e-01 1.00e+02 1.26e-01 1.00e-01 24 24 35 11
2 1.204637e+00 9.988045e-03 9.390741e-02 1.787331e+00 1.00e+02 7.94e-02 1.00e-03 76 52 103 16
3 1.212107e+00 5.974959e-03 1.000092e-03 8.040423e-01 1.00e+02 5.01e-02 1.00e-05 115 90 162 20
4 1.226482e+00 8.648857e-04 6.979474e-04 1.864555e-01 1.00e+02 3.16e-02 1.00e-05 154 122 220 20
5 1.228790e+00 6.240197e-05 4.387441e-07 3.126531e-02 1.00e+02 2.00e-02 1.00e-05 175 142 252 11
6 1.228938e+00 1.106293e-05 2.362168e-07 2.246611e-03 1.00e+02 1.26e-02 1.00e-05 181 148 261 3
7 1.228964e+00 1.972295e-06 4.233083e-07 3.929887e-04 1.00e+02 7.94e-03 1.00e-05 184 152 265 1

512×256 Mesh.
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Total optimization time = 3276.86 seconds.

0 7.041291e+00 2.312965e-17 8.427030e-01 1.00e+01 1.26e-01 8.43e-03
1 5.673678e-01 5.495446e-01 7.122910e-03 7.622124e-01 1.00e+02 1.26e-01 1.00e-01 26 26 38 12
2 1.185058e+00 1.555199e-02 3.787994e-02 2.341128e+00 1.00e+02 7.94e-02 1.00e-03 67 50 92 13
3 1.219717e+00 7.951031e-04 2.161753e-03 3.179712e-01 1.00e+02 5.01e-02 1.00e-05 115 90 160 20
4 1.221806e+00 9.060603e-07 3.634393e-04 9.348139e-02 1.00e+02 3.16e-02 1.00e-07 154 128 219 20
5 1.221776e+00 7.153583e-06 4.751420e-05 5.085859e-02 1.00e+02 2.00e-02 1.00e-07 192 164 277 20
6 1.221768e+00 9.636387e-06 1.061434e-05 2.220382e-02 1.00e+02 1.26e-02 1.00e-07 229 198 334 20
7 1.221789e+00 2.467628e-06 8.197599e-08 3.953958e-03 1.00e+02 7.94e-03 1.00e-07 263 226 388 20

1024×512 Mesh.

Total optimization time = 15296.5 seconds.

iter fval cnorm gLnorm snorm penalty feasTol optTol #fval #grad #cval subIter
0 7.033946e+00 2.312965e-17 8.426949e-01 1.00e+01 1.26e-01 8.43e-03
1 5.667705e-01 5.494992e-01 7.468271e-03 7.622279e-01 1.00e+02 1.26e-01 1.00e-01 26 26 38 12
2 1.188033e+00 1.305901e-02 3.058507e-02 2.095147e+00 1.00e+02 7.94e-02 1.00e-03 70 52 97 15
3 1.211831e+00 2.931495e-03 1.032600e-03 5.144561e-01 1.00e+02 5.01e-02 1.00e-05 111 90 158 20
4 1.219164e+00 2.939813e-04 4.240317e-04 1.116103e-01 1.00e+02 3.16e-02 1.00e-05 152 128 219 20
5 1.219645e+00 1.184069e-04 7.650312e-05 7.072162e-02 1.00e+02 2.00e-02 1.00e-05 192 166 278 20
6 1.220011e+00 1.086020e-05 2.665818e-05 2.457984e-02 1.00e+02 1.26e-02 1.00e-05 230 202 336 20
7 1.219975e+00 1.726753e-06 6.263598e-06 2.868126e-03 1.00e+02 7.94e-03 1.00e-05 241 212 353 6

3.3.2 3D Results

We consider (3.3) constrained by (3.2) with D=(0,2)×(0,1)×(0,1) and Γd = {0}× [0,1]× [0,1].
The load ` in this example is a Gaussian load of width 0.125 applied at x = (2,0.5,0.5). We further
specify that a feasible design cannot have compliance larger than c0 = 3 times the compliance of the
solid beam. Figure 3.7 depicts the optimal designs for a 32×16×16 mesh (top) and a 64×32×32
mesh (bottom). For this problem setup, the resulting volume fraction was approximation 0.3. In
the following table, we provide the iteration history from ROL’s Augmented Lagrangian solver for
the 32× 16× 16 problem. To ensure mesh independence, we scaled the objective function and
constraints in a similar fashion to that described in the Section 3.3.1. As with the 2D examples, the
algorithm shows only mild mesh dependence.

32×16×16 Mesh.

Total optimization time = 2752.38 seconds.

Augmented Lagrangian solver
iter fval cnorm gLnorm snorm penalty feasTol optTol #fval #grad #cval subIter
0 2.000000e+00 6.768891e-14 1.414214e+00 1.00e+01 1.26e-01 1.41e-02
1 2.149712e-01 3.132267e-01 1.349219e-02 1.335167e+00 1.00e+02 1.26e-01 1.00e-01 66 37 88 22
2 4.912828e-01 2.666639e-02 4.400842e-02 3.175645e+00 1.00e+02 7.94e-02 1.00e-03 96 58 129 11
3 5.309233e-01 1.490753e-02 7.806634e-04 1.695502e+00 1.00e+02 5.01e-02 1.00e-05 125 87 172 14
4 5.671782e-01 6.728358e-03 4.590311e-06 8.611898e-01 1.00e+02 3.16e-02 1.00e-05 167 126 236 22
5 5.826644e-01 3.551886e-03 2.613437e-06 4.778663e-01 1.00e+02 2.00e-02 1.00e-05 185 143 263 9
6 5.925839e-01 1.632762e-03 8.096817e-06 2.609762e-01 1.00e+02 1.26e-02 1.00e-05 208 166 297 11
7 5.953950e-01 1.103146e-03 2.449657e-06 1.623867e-01 1.00e+02 7.94e-03 1.00e-05 223 181 319 7
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8 5.977847e-01 6.641208e-04 2.005720e-07 1.146461e-01 1.00e+02 5.01e-03 1.00e-05 248 204 357 13
9 5.987113e-01 4.967627e-04 1.099315e-07 7.496046e-02 1.00e+02 3.16e-03 1.00e-05 264 219 381 8
10 6.006522e-01 1.482794e-04 4.273121e-08 5.671474e-02 1.00e+02 2.00e-03 1.00e-05 282 236 408 9
11 6.007579e-01 1.294053e-04 6.649835e-06 1.549910e-02 1.00e+02 1.26e-03 1.00e-05 285 239 412 1
12 6.008365e-01 1.153843e-04 2.403128e-06 1.332930e-02 1.00e+02 7.94e-04 1.00e-05 288 242 416 1
13 6.009054e-01 1.031171e-04 1.742653e-06 1.188013e-02 1.00e+02 5.01e-04 1.00e-05 291 245 420 1
14 6.009650e-01 9.254027e-05 1.166701e-06 1.059768e-02 1.00e+02 3.16e-04 1.00e-05 294 248 424 1
15 6.010171e-01 8.329581e-05 8.260544e-07 9.499960e-03 1.00e+02 2.00e-04 1.00e-05 297 251 428 1
16 6.014745e-01 1.049919e-06 5.521129e-06 2.245776e-02 1.00e+02 1.26e-04 1.00e-05 307 260 443 5
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Figure 3.7. Averaged “unfiltered” density optimization variables
z for a 32×16×16 mesh (top) and a 64×32×32 mesh (bottom).
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Chapter 4

Design of Conducting Networks

This chapter develops topology optimization formulation for use in design of electromagnetic con-
ducting networks. Section 4.1 presents a review of Maxwell’s equations and describes our dis-
cretization and solution approach. Section 4.2 presents a four contact electrostatic design formu-
lation. The goal of this formulation is to design two wires that can carry current between pairs
of conductors. Finally, Section 4.3 develops a time dependent formulation for design of the inner
MITL or, more generally, coaxial cable topologies.

4.1 Maxwell’s Equations

Maxwell’s equations collectively describe the evolution of electromagnetic fields

ε0
∂E
∂ t

+J =
1

sBµ0
∇×B (4.1)

∂B
∂ t

+ sB∇×E = 0 (4.2)

∇ ·E = ε
−1
0 ρ (4.3)

∇ ·B = 0 (4.4)

where Eq. 4.1 is Ampere’s law, Eq. 4.2 is Faraday’s law, Eq. 4.3 is Gauss’ law, and Eq. 4.4 is
Gauss’ law for magnetism or the solenoidal condition [3, 14]. Here E is the electric field, B is
the magnetic field, J is the current and ρ is the charge density. The constants ε0 and µ0 are the
permittivity and permeability. We introduced the constant sB as a scaling of the magnetic field used
to control the relative magnitudes of the electric and magnetic fields to ease the numerical solution
of Maxwell’s equation. Note that with the addition of a continuity relation on the charge density
(e.g. ∂tρ +∇ ·J = 0) Eq. 4.3 is automatically satisfied if the initial condition also satisfies Eq. 4.3.
Similarly with Eq. 4.4 for B. Below we will assume that current is proportional to the electric field,
this is Ohm’s law

J = σE (4.5)

where σ is a potential spatially varying conductivity.
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The electromagnetic energy is a function of the fields

W =
1

2µ0
B ·B+

ε0

2
E ·E (4.6)

whose evolution satisfies the conservation equation

∂W
∂ t

+µ
−1
0 ∇ · (E×B) =−J ·E. (4.7)

This can be easily derived by talking the time derivative of W and substituting Maxwell’s equations.
The term on the right is a dissipative term that accounts for energy loss due to Ohmic heating. The
flux term P = E×B is the Poynting vector that describes the flow of electromagnetic energy.

4.1.1 Coaxial Cables

An important application of Maxwell’s equations for this project is a coaxial cable. These transmis-
sion lines are designed to carry a signal over long distances. For the Z-machine, the magnetically
insulated transmission lines can be (grossly) simplified as a coaxial cable that needs to transmit a
large fast electromagnetic pulse with relatively little loss. Figure 4.1 shows a schematic of a coax-
ial cable with red being the conductor, and blue a void region. The general structure, is an inner
cylindrical conductor nested inside an outer cylindrical conductor. In the left image, terms from
the energy evolution equation give a rough estimate of the behavior of electromagnetic energy as
it flows through the cable. On the bottom, the Poynting flux indicates an inflow of power, while
on the top the energy flows out. On the outer walls, a perfect conductor is used in this model
that restricts the flow of energy in or out through the sides. Finally, in the volume energy is lost
through the Ohmic heating term. This term is larger with increasing conductivity. The right image
gives a top down view of the direction of the fields in the coaxial cable used in this report. The
electric field, which drives a potential difference, is radially pointing outward in the gap between
the conductors. While the magnetic field circles the current flowing in the inner conductor. The
current flows in opposite directions in each conductor.

4.1.2 Weak Form and Compatible Finite Element Discretization

A variational form for Maxwell’s equation is to find E ∈ H∇×(Ω) and B ∈ H∇·(Ω) such that
∫

Ω

(ε0∂tE+J) ·ψ−µ
−1
0 B ·∇×ψ dx+

∫

∂Ω

µ
−1
0 (n×B) ·ψ dx

+
∫

Ω

(∂tB+∇×E) ·φ = 0 ∀ψ ∈ H∇×(Ω),∀φ ∈ H∇·(Ω).

(4.8)
Note that the two Gauss’ law constraints are automatically satisfied through the choice of space
and by the assumption the constraints are satisfied at the initial time. Eq. 4.4 is satisfied because

50



n
·(

E
⇥

B
)

=
0

n · (E⇥B) � 0

n · (E⇥B)  0

��E · E  0

Solid

Void

Current (out of board, J)
Current (into board, J)

Electric field (E)
Magnetic field (B)

Conductor
Void

Figure 4.1. (Left) A schematic view of an idealized coaxial cable.
Power flows in from the bottom, and out the top, while no loss
occurs through the sides, while energy is lost in the volume due to
Ohmic heating. Solid conducting material is depicted in red, while
the void region is depicted in blue. (Right) A top down view of the
fields in the coaxial cable.
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∇×E∈H∇· and ∇ ·∇×= 0, thus ∂t(∇ ·B) = 0. For Eq. 4.3, select ψ = ∇ω ∈H∇× for any ω ∈H∇

and φ = 0, then Eq. 4.8 reduces to (for simplicity ignoring boundary conditions)
∫

Ω

(ε0∂tE+J) ·∇ω dx = 0 ∀ω ∈ H∇(Ω) (4.9)

⇒
∫

Ω

ε0∂tE ·∇ω−∇ ·Jω dx = 0 ∀ω ∈ H∇(Ω). (4.10)

This last statement, combined with a continuity condition on the charge density ∂tρ =−∇ ·J gives
a weak expression for Eq. 4.3 showing that Gauss’s law is satisfied given that the initial conditions
are satisfied.

Spatial discretization of Eq. 4.8 uses the compatible approaches described and implemented in
Intrepid [5]. These discretizations mirror the properties of the continuous spaces. For instance, the
compatible spaces V∇ ⊂ H∇, V∇× ⊂ H∇×, and V∇· ⊂ H∇· satisfy (with abuse of notation)

∇V∇ ∈V∇× and ∇×V∇× ∈V∇·. (4.11)

These properties, allow the trivial extension of the analysis for the continuous problem to the
discrete system using the weak form in Eq. 4.8 with proper substitution of the discrete spaces. In
all cases below, piecewise linear edge (H∇×) and face (H∇·) discretizations are used.

Applying implicit Euler to the weak form in Eq. 4.8 implies the variational form to find En+1 ∈
V∇× and Bn+1 ∈V∇· given En and Bn:
∫

Ω

(∆t−1
ε0En+1 +Jn+1) ·ψ−µ

−1
0 Bn+1 ·∇×ψ dx+

∫

∂Ω

µ
−1
0 (n×Bn+1) ·ψ dx

+
∫

Ω

(∆t−1Bn+1 +∇×En+1) ·φ dx =
∫

Ω

∆t−1
ε0En ·ψ dx+

∫

Ω

∆t−1Bn ·φ dx

(4.12)
for all ψ ∈V∇×,∀φ ∈V∇·. The implicit solution of this system allows us to step over the speed of
light stability limit in a stable fashion. However, efficient solution requires an effective precondi-
tioner. We have developed a class of block preconditioner specifically designed for this formulation
of Maxwell’s equations (see [11]). This preconditioner is effective for linear systems derived from
Eq. 4.12 with an Ohm’s law model for the current in the form

[
(∆t−1ε0 +σ)ME µ

−1
0 C

CT ∆t−1MB

][
En+1

Bn+1

]
=

[
f n
E

f n
B

]
(4.13)

where MB, and ME are the mass matrices for B and E, C is the discrete curl (whose transpose is
also a discrete curl), and the right hand side is defined by Eq. 4.12.

4.2 Electrostatics

4.2.1 Minimum Energy Dissipation Formulation

The problem of minimizing the energy dissipation in a conductor between two or more contacts
was considered in [18]. For this 2D problem the domain Ω, has a boundary ∂Ω subdivided into
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Nc contacts labeled Γc. Each contact had a prescribed current Ic that satisfies the compatibility
condition ∑

Nc
c Ic = 0. The PDE constraint is defined using the Eddy current form of Maxwell’s

equations that is simplified to the electrostatic limit. Finally, they impose a volume constraint, v f
that is a fraction of the volume of Ω. This results in the optimization formulation:

min
z

Nc

∑
c=1

∫

Γc

(−σ∇φ) ·nφ ds (4.14)

subject to

−∇ ·σ(z)∇φ = 0, (4.15)
∇σφ ·n|

Γc
= Ic for all c, (4.16)

φ |
∂Ω/∩cΓc

= 0, (4.17)
∫

Ω

z dx− v f |Ω|= 0, (4.18)

0≤ z≤ 1, (4.19)

where the conductivity σ(z) = σmin +(σmax−σmin)z, and φ is the electrostatic potential,

The approach summarized here was demonstrated to connect one inflow contact to multiple
outflow contacts. For multiple inflow contacts, the conducting material merges and is then dis-
tributed to each outflow contact. For the coaxial problem described above these designs would not
connect distinct pairs of contacts with conducting material.

4.2.2 Design of a Two Wire System

This section considers the design of a two wire conducting network using an electrostatic formula-
tion similar to the one presented above. The image on the left in Fig. 4.2 shows a four contact box
where current will be driven by a potential difference on the left contacts and grounded contacts
on the right. The right half of the image labels each of the contacts. The design goal, is to develop
two straight wires connecting contacts ΓA to ΓD and ΓB to ΓC. To do this we have developed two
optimization formulations motivated by the minimum energy dissipation formulation from [18]
discussed above. The first formulation successfully designs the two wires; however, the wires are
not straight. The second formulation adds a regularization parameter based on a minimal interface
criteria used in phase transitions to straighten the wires.

Formulation 1

Considering Fig. 4.2, the flux through the domain is driven by the potential difference between
the contacts. The contacts on the right represent a ground, and the contacts on the left represent a
source with a voltage difference between them. Ideally the large potential gradient between the two
left contacts would be resolved by delivering power in the form of current to the ground contacts

53



Positive 
Voltage 

Negative
Voltage 

Zero 
Voltag

e 

ΓA 

ΓB 

ΓD 

ΓC 

Figure 4.2. On the left a four contact device is pictured, with
potential values specified. On the right is the computational do-
main Ω and its boundaries defining the location of the contacts is
pictured.

on the right. To do this we will maximize the current flowing over the right contacts. Note, without
strategic placement of the conductors, relying instead on a uniform conductor, power would flow
between the two left contacts with relatively little current reaching the contacts on the right.

Define the approximation of the current on a contact denoted by Γ⊂ ∂Ω as

I(Γ,z)≈
∫

Γ

σ(z)∇φ ·n ds. (4.20)

Then the optimization problem for design of a two wire system is

min
z∈V

I(ΓC,z)− I(ΓD,z) (4.21)

subject to

−∇ ·σ(z)∇φ = 0 (4.22)
φ |

ΓA
= φ0 (4.23)

φ |
ΓB

=−φ0 (4.24)

φ |
ΓC

= 0 (4.25)

φ |
ΓD

= 0 (4.26)
∫

Ω

z dx− v f |Ω| ≤ 0 (4.27)

0≤ z≤ 1. (4.28)

where

V = {v ∈ H1(Ω) : v|Γ = 1 where Γ = ΓA∪ΓB∪ΓC∪ΓD and v|∂Ω/Γ = 0}. (4.29)

Here the space V defines boundary conditions on the control z, boundary conditions and spaces for
the state variable follow from Eqs. 4.22-4.26 using a standard finite element discretization. The
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boundary conditions specified for the PDE correspond to those shown in Fig. 4.2. Note that the
objective is minimizing the difference between the currents over the contacts on the right side of
the domain. This minimization will force the current over contact ΓC to be as small (negative)
as possible, while ΓD will have a current as large (positive) as possible. This corresponds to
maximizing the magnitude of the current over these two contacts. The parameter v f is the fraction
of the volume that the conductive material is allowed to fill. To handle the volume constraint
(Eq. (4.27)) we will reformulation the objective function using Moreau-Yosida regularization and
include the inequality in the objective (see Section 2.3.2). Thus the new optimization system is

min
z∈H1(Ω)

I(ΓC,z)− I(ΓD,z)+
wz

3
max

(∫

Ω

z dx− v f |Ω|,0
)3

(4.30)

subject to the PDE strong form in Eqs. (4.22)-(4.26). Here wz is a user specified weighting param-
eter. Finally the conductivity σ is modeled by the SIMP method [35]. Where the relationship to
the control z is

σ(z) = σmin +(σmax−σmin)z3. (4.31)

Here σmin is the conductivity of the void material and σmax is the conductivity of the solid material.

The model parameters are

v f = 0.25, wz = 106, σmin = 10−8 and σmax = 1.45×106. (4.32)

The mesh was 100× 100 run on 12 processors. This was solved using the ROL Truncated CG
Trust Region method. The Poisson operator was discretized using the finite element method im-
plemented in Drekar . The initial condition for the control was a uniform field of z= 0.25. Finally,
the definition of the numerical current follows from direct substitution of the numerical potential
φh into Eq. 4.20, e.g.:

Ilow(Γ,z)≈
∫

Γ

σ(z)∇φh ·n ds. (4.33)

This form of the current is accurate to only first order. At the final step the currents and volume
values were
∫

ΓC

σ(z)∇φ ·~n ds = 60.6692597,
∫

ΓD

σ(z)∇φ ·~n ds =−56.8403947 and
∫

Ω

s ds = 0.270162055

(4.34)
The left image in Figure 4.3 shows the placement of conductive material (red). From this image
its clear that the optimization problem finds two wires. However, there are a number of interesting
issues. First the wires clearly bend. In addition, wires are disconnected near the C and D contacts.
The gap appears regardless of mesh resolution and is always one element wide. This is blamed on
the low order form of the numerical current calculation, thus we will develop a second order form.

A second order form of the current can be derived for use with the finite element method by
carefully applying integration by parts. For a contact on Γ, define a subdomain Ωs ⊂ Ω such that
Γ⊂ ∂Ωs. Let v be a function in H1(Ω) such that v|Γ = 1 and v|Ω/Ωs = 0. The last equality implies
that v has support only on Ωs. Assume additionally that the length (or measure) of ∂Ωs/Γ is small.
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Figure 4.3. The result of a gradient descent trust region algo-
rithm applied to the PDE constrained optimization formulation in
Eqs. 4.21-4.28. The optimal solution on the left was computed us-
ing a numerical current defined in Eq. 4.33 , while the solution on
the right was computed with the second-order numerical current in
Eq. 4.37. Note that the gap in front of the right contacts is closed
by the second-order current definition.

Then
∫

Γ

σ∇φ ·~n ds≈
∫

∂Ωs

vσ∇φ ·~n ds (4.35)

=
∫

Ωs

σ∇φ ·∇v+ v∇ ·σ∇φ dx. (4.36)

The last term in this expression is simply the weak residual of the Laplician equation (for the PDE-
constraint ∇ ·σ∇φ = 0). If Ωs is the set of elements that share at least a node with Γ, then v is
defined to be 1 on Γ and 0 on the remaining nodes. Thus the current can be approximated as

I2(Γ,z) =
∫

Ωs(Γ)
σ(z)∇φh ·∇vΓ ds (4.37)

where Ωs(Γ) and vΓ are defined as describe above.

Using the second order definition to compute the current, and applying the above optimization
formualtion with the model parameters:

v f = 0.22, wz = 106, σmin = 10−8 and σmax = 1.45×106. (4.38)

The mesh was 160×160 run on 16 processors. This was solved using ROL (Truncated CG). The
initial condition was a uniform field of z = 0.2.

The right image in Fig. 4.3 shows the results of optimizing with the second order current.
In particular the gaps from the first order formulation have now closed. The far left image in
Figure 4.4 shows the currents and the volume as a function of the number of iterations. First notice
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Figure 4.4. From left to right these figures shows the currents
and the volumes plotted for each iteration of the optimization al-
gorithm.

that the A current is postive while the opposite contact C has negative current. This is as expected.
Similarly D has positive current and B has negative current. Finally, notice that the conservation
properties are not ideal and that the currents don’t exactly balance. In fact a closer examination
shows that A and B currents are closer to equal and opposite than (for instance A and C). This is
also reflected in C and D. This is a result of leakage between the wires.

A brief mesh study is presented in Figures 4.5 and 4.6. These show the behavior of the opti-
mization algorithm over three different mesh sizes.

Two theories we considered for the bending of the wires were 1) leakage between the wires
resulted in a greater loss of current when the wires were straight and closer together, 2) the objective
surface has many local minima and bent wires is the first reached. To investigate the source of
the bending wires we ran the same optimization formulation with straight wires set as the initial
condition. The result was the wires stay straight. The wires were not forced to a bent position
where any leakage between the two would be reduced. Our preliminary conclusion is that the bent
wires are a result of non-uniqueness in the objective function and the added length of the wires is
not a substantial loss mechanism for this model.

Formulation 2

The change to using the high order current calculation in Formulation B removed the gaps at the
boundary. However, the bending of the wires remained. To address this, we developed a topology
optimization formulation that minimizes the surface area between the conductor and void space
(red and blue in the images above). This is based on theory from the phase field community
developed in [29]. This theory is used to define an energy functional whose constrained minima
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Figure 4.5. These figures shows the current over a range of mesh
sizes, from left to right and top to bottom are 40×40, 80×80 and
160×160.
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Figure 4.6. These figures shows the volume over a range of mesh
sizes, from left to right and top to bottom 40× 40, 80× 80 and
160×160.
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defines the stable configuration of a fluid composed of multiple density distributions with minimal
surface area interfaces between the densities. We paraphrase the main result from this paper here:

Theorem 4.1. Define W : R→ R to be a continuous, positive function with two minima at α < β

satisfying W (α) =W (β ) = 0. Further, let m ∈ R satisfy α|Ω| ≤ m≤ β |Ω|. Now define a function
uε ∈ L1(Ω) that minimizes

minimize
uε

∫

Ω

ε∇uε(x) ·∇uε(x)+W (uε(x))dx

subject to
∫

Ω

uε(x)dx = m, u(x)≥ 0.

Then as ε → 0+, the sequence uε converges to u0 ∈ L1(Ω) satisfying:

1. u0(x) = α or u0(x) = β for almost all x ∈Ω,

2. the interface between the sets x : u0(x) = α and x : u0(x) = β has minimal area.

Proof. See [29].

Motivated by this result we will add a regularization term to the objective function used in the
previous formulation. Because, our topology optimization formulation (and algorithm) enforces
that the control is between [0,1], and SIMP enforces the digital nature of the solution, we drop the
penalization term from Theorem 4.1 (e.g. the W (x)) and focus on the regularization to produce the
minimal interface. Thus the second two wire formulation is:

min
z∈V

I(ΓC,z)− I(ΓD,z)+
wz

3
max

(∫

Ω

z dx− v f |Ω|,0
)3

+
∫

Ω

ε∇z ·∇z (4.39)

subject to Eqs. 4.22-4.28. The regularization term
∫

Ω
ε∇z ·∇z is referred to below as the Ginzburg-

Landau energy (this is slightly incorrect as this typically includes the 0-1 penalization term implied
by the W we have excluded).

Figure 4.7 shows a sequence of images for the optimization problem run with a fixed ε . Early
in the optimization process the wires are bent, then straighten as the Ginzburg-Landau energy term
begins to dominate the objective function. This minimizes the surface area between the conductor
(red) and the void regions (blue). For this fixed value of ε the interface is more diffused then the
original unregularized problem. Figures 4.8, 4.9, 4.10 show the convergence over several iterations
of various figures of merit associated with this formulation. Notice that the currents (Fig. 4.8)
behave similar to formulation 1. The conservation properties of this system appear to be much
better with closer matching between input and output currents, and less overall loss. The volume
(Fig. 4.9) converges to the target volume. Finally the images in Fig. 4.10 show the convergence of
the Ginzburg-Landau energy. Clearly minimizing this values has an effect on the solution.
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Figure 4.7. This figure plots the conductivity computed using
formulation 2. Notice that the gaps that existed in formulation 1
are closed and the wires are no longer bent. However, the inter-
face is more diffused. Each image is computed from a different
optimization iteration count.

4.3 Electromagnetics

This section develops an approach for design of coaxial conducting networks. This builds on
the brief discussion of the electromagnetic properties of the coaxial cable in Section 4.1.1. The
spatial discretization used for all results developed here was discussed in detail in Section 4.1.2.
The formulation developed is based on a transient backward Euler implementation of Maxwell’s
equation. This is used to design an inner MITL and compare to the theoretical results developed
in [19].

4.3.1 Design Objective and Constraints

Maxwells equations discretized using compatible basis functions, as discussed in Section 4.1, will
be used as the PDE constraint. Ohm’s law will be used to defined the current such that

J = σ(z)E (4.40)

where the conductivity σ is dependent on the control parameter z. This will use a SIMP model

σ(z) = σmin +(σmax−σmin)z3 (4.41)

where z ∈ [0,1] and σmax/σmin is the maximum/minimum conductivity. For boundary conditions
the outer wall of the coaxial cable uses a natural boundary condition (e.g. n×B= 0). The boundary
conditions on the outflowing surfaces on the top of the coaxial cable usie a low order absorbing
boundary conditions (ABC) that enforces

(4.42)
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Figure 4.8. These figures show the current over a range of mesh
sizes, from left to right and top to bottom 40× 40, 80× 80 and
160×160. (Formulation 2)
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Figure 4.9. These figures show the volume over a range of mesh
sizes, from left to right and top to bottom 40× 40, 80× 80 and
160×160. (Formulation 2)
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Figure 4.10. These figures show the Ginzburg-Landau energy
over a range of mesh sizes, from left to right and top to bottom
40×40, 80×80 and 160×160. (Formulation 2)
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See [7] for more details.

The base, or input port of the cable, is divided into three regions based on the distance from the
center. Let r be the vector from the current point to the center of the coaxial cable. The distribution
of conducting material on the base is defined as

σ(r) =





σmax 0≤ |r| ≤ r0

σmin r0 < |r|< r1

σmax r1 ≤ |r| ≤ r2

. (4.43)

Here 0 < r0 < r1 < r2 are the radii of each of three concentric circles on the base of the cable. In an
ideal coaxial cable, this would define the nested cylinders. The boundary conditions on the input
boundary are set to be

E · r =





0 0≤ |r| ≤ r0

E0/|r| r0 < |r|< r1

0 r1 ≤ |r| ≤ r2

. (4.44)

These boundary conditions are easily enforced strongly as Dirichlet conditions given the com-
patible H∇× basis. Notice that this boundary condition implies that their is no electric field in
the conductor. While in the gap, the electric field is radial. This enforces a fixed potential drop
between the inner and outer conductors (see the Appendix A).

For optimization the objective function measures the power flow through the upper port of the
coaxial cable. The layout of the conducting material is defined in the same way as the lower port.
Define the 2D domain Γout = (r,Ltop) : r1 ≤ r ≤ r2 where Ltop is the vertical location of the top
port. Then the objective that is used for optimization is the power flow through the gap out of the
domain: ∫

Γout

µ
−1
0 (E×B) ·nds. (4.45)

The goal of the optimization is to maximize this quantity, attempting to ensure that the power
flowing through the cable is maximized and minimal energy is lost to flow through the boundaries
or Ohmic heating.

In the text that follows many images will use slices through the coaxial cable to display the
placement of conducting material. See Fig. 4.11 for a visual depiction of the process on an ide-
alized coaxial cable. The conducting material is clearly placed in nested cylinders with a void
between the two cylinders. In the 2D colormap, this is shown as a two vertical void regions (blue)
and three vertical conducting regions (red).

4.3.2 Transient Design

The transient version of the design problem uses the backwards Euler method to evolve Maxwell’s
equations. As discussed above, the enforcement of the charge conservation (Gauss’ laws) involu-
tions is implied by the discretization. The optimization problem formulation maximizes the total
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Solid

Void

2D Slicing Plane

2D Surface of “Ideal” Coax

Figure 4.11. A visualization guide for the topology optimization
results below. A 3D coaxial cable, with the colormap denoting
conducting regions (red) and void regions (blue), is sliced through
the middle. On the right is a 2D colormap displaying the placement
of conducting material in the interior (along the slice) of the cable.
This images is for an idealized coaxial cable.
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power flow through the top port subject to satisfying Maxwell’s equation.

min
z

−αpower

∫ t f

0

∫

Γtop

n · (E×B)dxdt (4.46)

subject to

ε0
∂E
∂ t

+σ(z)E =
1

sBµ0
∇×B (4.47)

∂B
∂ t

+ sB∇×E = 0 (4.48)

n×B|Γside = 0 (4.49)
n×E|Γbottom = Eradial (4.50)

n×B|Γtop =−Etan (4.51)

σ(z) = σmin +(σmax−σmin)z3 (4.52)

Note the final time for the simulation t f , and a scaling parameter for the objective, αpower. The
radial boundary condition on the bottom port is specified to be zero in the conductor and radially
outward in the gap between the conductors. Also, as of publication, we have not found that the
minimal interface condition discussed in Sec. 4.2.2 to be required for these simulations. We con-
sider three different modifications of this with respect to the volume of conducting material. The
three cases are

Vol1 Volume is explicitly constrained to satisfy some fraction of the total volume
∫

Ω

zdx−Vf |Ω|= 0, (4.53)

Vol2 Volume contribution is ignored,

Vol3 Volume contribution is maximized by adding it to the objective,

−αvol

∫ t f

0

∫

Ω

zdxdt (4.54)

When presented below, the numerical optimization approach used is different for each case. The
Vol1 case is solved using an Augmented-Lagrangian approach. While the Vol2 and Vol3 cases are
solved using a Kelley-Sachs trust region method (as there is no explicit volume constraint).

Regarding the total simulation time t f . Some effort was spent to play with this parameter.
Often if this was set too small, not enough electromagnetic energy would pass through the domain
and poor unreasonable designs would result. In particular, Figure 4.12 shows a pseudo transient
(one speed of light pass through) simulation where a single large time step is taken to design
a straight coaxial cable. The designs used the Vol1 enforcement of the volume constraint, thus
an augmented Lagrangian approach is applied. Two different starting guesses are chosen, one
a uniform conductivity, and the second an oscillating conductivity. The figure shows the two
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resulting designs. The design on the left gives a reasonable coaxial cable design. The inner/outer
conductor on the bottom connecting to the inner/outer conductor on the top. For the second design
(with a uniform initial guess) the inner/outer conductor on the bottom connects to the outer/inner
conductor on the top. A reversal of the conductors. This reversal is made apparent in the images
showing the direction of the electric field on the top port. For the oscillating conductor the electric
field on the top gap matches the electric field direction in the bottom gap, as expected for a coaxial
cable. For the uniform initial guess, the electric field on the top of the gap is reversed from that
which was set on the bottom! Thus in this case there are two local minima that are accessible that
are both power maximizing (the magnetic field is reversed in the uniform case). This problem goes
away if a longer transient optimization simulation is run.

If to large a value of t f is chosen, the simulation takes an extraordinarily large amount of time
to complete. This was due to a need to increase the number of time steps taken to reduce the
preconditioning costs. In these simulations, it was often the case the preconditioners developed
in [11] were not as effective due to the highly variable conductivity. The choice made for the
design of the feed below were chosen to allow multiple (3−4) speed of light pass throughs, while
still maintaining a reasonable1 optimization time.

The coaxial design problem considered here is to solve the two port (upper and lower) problem
with two distinct radii. This is the case considered in the [19]. The goal is to try to replicate the
structural properties of their analytic shape optimization using the topology optimization technol-
ogy developed here. Two versions of the design are considered. The radii and heights defining the
ports for the two problems are

Tall

rtop
0 = 4×10−4, rtop

1 = 8×10−4, rtop
2 = 2×10−3 (4.55)

rbottom
0 = 1.2×10−3, rbottom

1 = 1.6×10−3, rbottom
2 = 2×10−3 (4.56)

zbottom = 0.0, ztop = 2.5×10−3 (4.57)
Hurricane coordinates : (Rout ,Zout) = ((0.0014,0.0), (Rin,Zin) = (0.0006,0.0025)

(4.58)

Short

rtop
0 = 4×10−4, rtop

1 = 8×10−4, rtop
2 = 3×10−3 (4.59)

rbottom
0 = 2.2×10−3, rbottom

1 = 2.6×10−3, rbottom
2 = 3×10−3 (4.60)

zbottom = 0.0, ztop = 1.32×10−3 (4.61)
Hurricane coordinates : (Rout ,Zout) = (0.0024,0.0), (Rin,Zin) = (0.0006,0.00132)

(4.62)

In all cases the gap width of the incoming and outgoing ports are defined to be 4×10−4. Below the

1For the smallest grids this was often on the order of 5− 6 hours on sixteen cores depending on the optimization
algorithm
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Oscillatory Uniform Oscillatory Uniform

Figure 4.12. Two pseudo-transient designs of a straight coaxial
cable. The designs differ only in the initial condition of the con-
ductor, where one is uniform and the other is oscillatory. The time
step is slightly longer then would be dictated by a single speed of
light pass through. The image on the right shows the electric field
on the top port of the conductor. Notice that the electric field for
the uniform initial condition is reversed from the oscillatory case.
This suggests that both designs maximize power, but in distinct
local minima.
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Figure 4.13. A picture of the domain used for the design of the
varying radii feed. The lower portion represents a coaxial cable
with radii rbottom

0 ,rbottom
1 ,rbottom

2 and the input port. The upper por-
tion represents a load, in this case a solid block of conductor with
the port ending in rtop

0 ,rtop
1 ,rtop

2 . The overall height of the design
regions is specified as ztop− zbottom.

design images and results will be labeled with the shape parameters (Tall, Short), and the volume
constraint approach taken (Vol1,Vol2, Vol3).

The design problem is relegated to a subset of the domain, while the top and bottom provide
for the incoming port and the outgoing load respectively. See Figure 4.13 for a description of
the domain. On the lower portion, the electromagnetic fields are allowed to evolve in the coaxial
geometry before the design portion of the domain. The upper portion of the domain is designed
to absorb any energy and dissipate it in the conductor. In general, this could lead to reflections.
Though for the choices made for physical simulation time t f , this has not been problematic.

For both the Tall and Short inner MITL problems, the initial condition is a uniform guess for
the conductivity corresponding to z = 0.2. Figure 4.14 presents 3D images of the initial condition
and the final design. The value for the conductivity ranges from σmin = 10−3 to σmax = 103. These
values, like other terms, were chosen to minimize the stress on the preconditioner, while simulta-
neously providing enough separation between conductor and void for the optimization problem to
progress. The simulation time is t f = 4.67128190104799×10−11 which was chosen to allow the
initial electromagnetic field to fully propogate and pass through the domain if it were unimpeded.
A total of 200 backward Euler steps are taken to evolve the state equation. The magnetic field
is scaled as sB = 3× 106 (this was chosen so that the electric field’s and magnetic field’s mag-
nitude is roughly the same order). Physical values of the permittivity and permeability are used;
µ0 = 1.25663706−6 and 8.85418782×10−12. The input boundary condition for the bottom port is
defined on the electric field. For regions where the conductivity is solid, there is no electric field.
In the gap the electric field is ramped and then maintained as a constant throughout the remainder
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Initial Guess Optimized Design

Figure 4.14. This image demonstrates the initial condition and
end design computed for the inner MITL Tall problem. Red rep-
resents solid conductor, and blue represents void material. The
current, depicted by the green arrows is evident in the final design.
While the current is not flowing through the domain in the initial
condition.

of the simulation. Based on a radial electric field the magnitude is specified as

Er(t) = min(1.0,(t/tr)p)E0. (4.63)

For the results described below p= 2, tr = 3.50346142578599×10−12, and E0 =−1.091356267179026×
102. The parameter scaling the objective is αpower = 10−16.

The design results after 40 iterations of the Kelley-Sachs algorithm using no volume contri-
butions (Vol2) are presented in Figure 4.15. The ideal curve for the inner MITL derived in [19]
overlays the colormap slice through the domain. These curves, for this coarse simulation, show
qualitative agreement with the theory for both the Tall and Short problem. In the Tall case the
topology optimization solution captures the initial increase in the radius of the inner feed.

One aspect of this result that is suboptimal is the placement of “void” in the center (this area
is a bell shaped blue region in Figure 4.15). This is the result of using the Vol2 formulation that
places no restraint on the volume of conducting material. Note that this isn’t particularly important
for this electromagnetic design problem as little current or magnetic field is present in this part of
the domain. So it neither harms nor helps the total power outflow. To demonstrate this, Figure 4.16
shows the same design problem run with the Vol3 formulation that adds the volume to the objective
function. The volume contribution is scaled by αvol = 2.14073999639297× 1020. This value is
chosen to ensure the two terms of the objective are roughly balanced. Figure 4.16 shows the
resulting design for this optimization problem. The design is qualitatively the same as the design
in Figure 4.15. The primary difference is there is less of the void region in the center of the domain.
Quantitatively the power output of Tall-Vol2 is 2.378×10−9, versus 2.309×10−9 for Tall-Vol3.
This deviation is attributed to the magnitude of the volume term in the objective overtaking the
power contribution as the design is refined.

Figure— 4.17 shows a 2D slice of the Tall design problem optimized using Vol1. In this case
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Figure 4.15. Two dimensional slices through the 3D inner MITL
domain, run with the Vol2 formulation. The theoretical result for
the ideal shape of the inner MITL is overlaid on the images. No-
tice there is good qualitative agreement for both the Tall (left) and
Short (right) problem.

Figure 4.16. This image shows the result of the Tall problem
run using Vol3 volume enforcement (compare to the left image
in Figure 4.15). Notice a good inner MITL design is developed,
though the placement of arbitrary void in the center is reduced as
compared to the Tall-Vol2 case.
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Figure 4.17. This image shows the result of the Tall problem
run using Vol1 volume enforcement with coaxial output port used
instead of conducting block of conducting material (compare to the
left image in Figure 4.15). In this case the optimization algorithm
was not able to find a good inner MITL design.

instead of a solid block of conductor in the upper domain, a coaxial output on the upper port is
used. This leads to a different impedance (as the load is only defined by the absorbing boundary
condition on the upper boundary) then the solid conductor which dissipates the electromagnetic
energy. This design is particularly poor and does not even create a complete circuit. The effect of
the load on the design is an interesting avenue for future exploration.
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Chapter 5

Conclusion

Computational design optimization is an increasingly important tool for many aspects of the San-
dia mission space. This LDRD proposed to extend these ideas into the challenging area associated
with design of components of the Z-machine. As a result of this ambitious goal a number of critical
capabilities were implemented, methods developed, and formulations pursued. These techniques
will lead to improvements in performance, robustness and extend the applicability of existing ap-
proaches. In addition, this effort applied these approaches to a range of physical models including
linear elasticity, electrostatics, and electromagnetics. The key results of this project include:

• A number of important software advances were made through the efforts of this project. A
sequence of new optimization methods were incorporated into the ROL library available in
the Trilinos framework. This capability is being applied and used by other Sandia programs
including the ASC program, CRADA partners, and DARPA projects. In addition, we used
the Sacado automatic differentiation library to implement first and second derivatives in
the Drekar multi-physics application. Finally, we developed a runtime calculator that uses
Sacado to automatically differentiate the objective function.

• We developed a pair one dimensional discrete beam models to explore the effect of topology
optimization formulations on the performance of various optimization algorithms. We were
interested in understanding how the performance (measured in terms of iterations) is effected
as the number of cells increases. A critical outcome of this effort was to determine that
Newton-based optimization methods can achieve mesh independence, while the gradient
based approaches are not algorithmically scalable.

• A new scalable approach to structural design using topology optimization was developed.
This involved formulating the optimization problem using volume minimization with an in-
equality constraint on the compliance. To ensure the solution is mesh independent, a filtering
algorithm is applied to the design variable. To solve this problem an augmented Lagrangian
trust region approach is applied. With this formulation, the iterations required by the algo-
rithm are independent of mesh size.

• A topology optimization formulation constrained by an electrostatic model was developed to
design conducting networks. This formulation was used to design a four contact conducting
network.

• A transient electromagnetic design capability was implemented. This used a compatible
basis discretization of Maxwell’s equations and novel preconditioning technology to allow
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efficient implicit simulation. A SIMP based topology optimization formulation was imple-
mented and used to design an inner MITL. This result compared favorably to a theoretical
development to design the same device.

5.1 Next Steps

This project provided a topology optimization foundation for design of electromagnetic conduct-
ing networks. However, a number of activities should be pursued in extension of this work. For
instance, the H∇ discretization of the control used in the electromagnetics problem seems subopti-
mal. In particular, the current typically lives on the surface of the conductor. The SIMP formulation
does not do a good job providing the sharp interfaces required. In general other approaches beyond
SIMP and a density based method should be considered. To increase the value of the modeling,
improving the electromagnetic model and working to justify or extend the Ohm’s law approach
considered above should be pursued. Finally, considering the scalability and applicability of the
optimization approaches there are two paths forward. First new algorithms could be developed
that take into account the structure used by the SIMP method. Second, developing density based
or other topology formulations that are more amenable to existing optimization algorithms.
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[7] Gary C Cohen and Sébastien Pernet. Finite element and discontinuous Galerkin methods for
transient wave equations. Springer, 2017.

[8] Thomas F. Coleman and Yuying Li. An interior trust region approach for nonlinear mini-
mization subject to bounds. SIAM Journal on Optimization, 6(2):418–445, 1996.

[9] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. LANCELOT: A FORTRAN package for large
scale nonlinear optimization with simple bounds. Springer Series in Computational Mathe-
matics, Vol. 17. Springer Verlag, Berlin, Heidelberg, New York, 1992.

[10] E.C. Cyr, J.N. Shadid, and R.S. Tuminaro. Teko: A block preconditioning capability with
concrete example applications in navier–stokes and mhd. SIAM Journal on Scientific Com-
puting, 38(5):S307–S331, 2016.

[11] E. G. Phillips, J. N. Shadid, and E. C. Cyr. Scalable Preconditioners for Structure Preserving
DIscretizations of Maxwell Equations in First Order Form. submitted to SISC, 2017.

[12] E.C. Cyr, M. Hoemmen, R.P. Pawlowski, B. Seefeldt. Parallel Unknown Numbering for the
Finite-Element Method. Technical report, in preparation, 2017.

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-Wesley Profes-
sional, 1995.

[14] Johan Peter Goedbloed and Stefaan Poedts. Principles of magnetohydrodynamics: with ap-
plications to laboratory and astrophysical plasmas. Cambridge university press, 2004.

77



[15] Matthew Robert Gomez, Michael Edward Cuneo, Ryan D McBride, Gregory Alan Rochau,
DJ Ampleford, JE Bailey, AD Edens, B Jones, M Jones, MR Lopez, et al. Spectroscopic
measurements in the post-hole convolute on sandia’s z-machine. In Pulsed Power Conference
(PPC), 2011 IEEE, pages 688–695. IEEE, 2011.

[16] MR Gomez, RM Gilgenbach, ME Cuneo, CA Jennings, RD McBride, EM Waisman, BT Hut-
sel, WA Stygar, DV Rose, and Y Maron. Experimental study of current loss and plasma
formation in the z machine post-hole convolute. Physical Review Accelerators and Beams,
20(1):010401, 2017.

[17] W. Hock and K. Schittkowski. Test examples for nonlinear programming codes. Journal of
Optimization Theory and Applications, 30(1):127–129, Jan 1980.

[18] Ronald HW Hoppe, Svetozara I Petrova, and V Schulz. Primal-dual newton-type interior-
point method for topology optimization. Journal of Optimization Theory and Applications,
114(3):545–571, 2002.

[19] OA Hurricane. Optimized minimal inductance transmission line configuration for z-pinch
experiments. Journal of applied physics, 95(8):4503–4505, 2004.

[20] K. Ito and K. Kunisch. Augmented lagrangian methods for nonsmooth, convex optimization
in hilbert spaces. Nonlinear Analysis: Theory, Methods & Applications, 41(5):591 – 616,
2000.

[21] C.T. Kelley and E.W. Sachs. Truncated newton methods for optimization with inaccurate
functions and gradients. Journal of Optimization Theory and Applications, 116(1):83–98,
Jan 2003.

[22] G. Kiziltas, D. Psychoudakis, J. L. Volakis, and N. Kikuchi. Topology design optimization
of dielectric substrates for bandwidth improvement of a patch antenna. Antennas and Propa-
gation, IEEE Transactions on, 51(10):2732–2743, 2003.
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Appendix A

Radial solutions to Gauss’ law

A frequent activity for this project was to solve Gauss’s law

∇ ·E =
1
ε0

ρ (A.1)

where ρ is the charge density and E is the electric field) in cylindrical coordinates. Introducing the
potential (E =−∇φ ) gives In this case the potential satisfies

−∇ ·∇φ =
1
ε0

ρ. (A.2)

Assuming symmetry in the z and θ directions, then we can rewrite Gauss’ law as

− 1
r

∂r(r∂rφ(r)) =
1
ε0

ρ (A.3)

where r is the radius. If we have that ρ = 0 then the the potential is written as

φ0(r) =C0 +C1 log(r). (A.4)

These can be verified by substituting the expression for φ into Eq. A.3. Thus the electric field is
proportional to r−1.
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